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Appendix A: Comparative Statics 

Here, I show that it is ambiguous whether increasing the generosity of the crediting baseline locally 

increases or decreases the percentage of additional offsets, as given by (4). 
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For each country i, the numerator is the difference between the crediting baseline and BAU 

emissions, conditional on this value being positive (i.e., conditional on generating non-additional 

offsets). The denominator is the difference between the crediting baseline and actual emissions, 

conditional on the crediting baseline being greater than the rent extraction point b
i

r  defined in (7) 

(i.e., conditional on a country’s participation).  
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 assuming that each country knows its own BAU emissions with 

certainty. Then for each country, the minimand in (4) can be expressed as follows, dropping the i 

subscript for clarity and letting S and T respectively stand for non-additional and total offsets from 

all other countries:  

M ≡
S +max b− ẑ0
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I obtain the derivative of (9) with respect to b through Leibnitz’s Rule, assuming certain regularity 

conditions for fΕ ε( ) , and the quotient rule: 
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The first term in (10) represents the probability that a country will participate when it did not before. 

The second and third terms respectively represent the probabilities that a country will generate more 

additional and non-additional offsets respectively. 

The sign of the derivative in (10) is ambiguous. The first term is negative from (7), the second term is 

negative, and the third term is positive as T ≥ S and q* is positive. As long as S is nonzero and the 

probability density function fΕ ε( )  is sufficiently large below ẑ0 − b , the first two terms will 

dominate and (10) will be negative. If the mass of FΕ ε( )  is concentrated above ẑ0 − b , or if S is zero, 

then the third term will dominate and (10) will be positive. 

In practice, at least with symmetric baselines and regularly shaped error distributions, (10) is likely to 

be positive – increasing the crediting baseline (making it more generous) will increase the proportion 

of non-additional offsets. That is because the greater the probability mass of FΕ ε( )  at and below

ẑ
0
− b , the smaller will be S (given the assumption of symmetric baselines). However, two numerical 

examples demonstrate the formal ambiguity, even with symmetric baselines. Suppose that the initial 

baseline is the same for the other N – 1 identical countries, and thus: 
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+ε( ) fΕ ε( )
ẑ
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Assume the following values:N =100, b = 92, ẑ

0
=100, b̂

r
= 95, q

*
=12, T = E[T ], S = E[S] . If 

ε ~ N(0,16) then (10) is positive. If ε ~Gamma(2, 0.6) then (10) is negative (in both cases, solving 

by numerical integration). The assumptions of symmetry and that each country knows its own BAU 

emissions with certainty are a special case, so the derivative of (4) can take on either sign. 

A similar argument shows the ambiguity of the comparative statics of (5), where the regulator seeks 

to minimize global emissions. As before, a country participates if ε ≥ b̂r − b ; and has emissions 

z
0
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0
−ε  if it does not participate, and b− z

0
− q

*
− b( )  if it does participate. Given that emissions 

elsewhere in the world then increase by z0 − q* − b (the number of offsets generated), the minimand 

of (5) can be expressed as follows: 
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By Leibnitz’s Rule, the derivative of (12) with respect to b are as follows: 
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The first term is negative, and represents the reduction in global emissions as countries participate. 

The last term represents the increase in global emissions as the crediting baseline rises.  Thus, the 

sign of (13) depends on the shape of fΕ ε( ) , and is ambiguous. 



Appendix B: Derivation of Abatement Costs 

As discussed in the main text (Section 3.1), I derive regionally specific abatement cost curves from 

the Global Change Assessment Model (GCAM). I impose a series of carbon prices for each region 

from 2020 onwards, and use GCAM to simulate abatement in 2020 at that price (percentage 

abatement in 2035 is very similar). This method of deriving abatement costs is similar to that of 

Böhringer et al. (2005) and Baker et al. (2009). 

Large differences in abatement cost estimates are often observed between bottom-up engineering 

studies and top-down integrated assessment models (Jaccard et al. 2004; van Vuuren et al. 2009). In 

this instance, however, estimates from GCAM are similar in magnitude to those derived from 

McKinsey engineering estimates of abatement potential in several countries – Brazil, China, Mexico 

and Russia (McKinsey & Company 2009a, b, c, d). Figure B-1 shows the GCAM cost curves and the 

McKinsey point estimates. 

This rough agreement between the McKinsey and GCAM methods increases confidence in the 

abatement cost curve estimates. Moreover, sensitivity tests to differences in abatement costs are 

implicitly performed as the simulations in Section 4 are run with a variety of carbon prices – 

doubling the carbon price is equivalent to halving abatement costs. Another form of sensitivity 

analysis involves using different shaped cost curves, rather than simply changing their level. 

Simulations (not shown) run with cost curves derived from the McKinsey country studies do not 

change the qualitative conclusions or the magnitude of the quantitative results. 



Figure B-1 Estimates of Marginal Abatement Cost Curves for Transportation 

 
Notes: (1) Negative-cost measures are excluded from the McKinsey data. These tend to be vehicle efficiency measures where 
barriers are institutional or informational. Sweeney & Weyant (2008: 21-22) argue that these types of negative-cost measures are 
at best only partially responsive to a carbon price, and I assume that implementation would not be affected by sectoral no-lose 
targets. (2) Curves for Eastern Europe, Latin America, SE Asia and FSU (Former Soviet Union) are practically indistinguishable. 
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Appendix C: Sensitivity to Estimates of BAU Emissions 

The estimates of business-as-usual (BAU) emissions employed here, upon which the crediting 

baseline is predicated, correspond to a method that would likely be used by a regulator in practice. 

However, the regulator might estimate an alternative specification with better predictive 

performance, either through luck or econometric skill. In this appendix, I therefore estimate an 

approximate upper bound on the regulator’s predictive ability in order to suggest how sensitive the 

results are to more accurate predictions of BAU.  

I estimate a total of 1,342,276 specifications for the three horizon periods (i.e., using only data 

through 1997, 2002 or 2006), and select the one with the lowest population-weighted mean square 

error for an out-of-sample prediction in 2007. As with the plausible specification discussed in the 

main text, the crediting baseline is then set as a percentage of estimated BAU. Where a log 

dependent variable specification was used, predictions were made with Duan’s smearing estimate. 

Table C-1 shows the universe of 12 specifications and 19 sets of predictor variables that are used in 

the search. The total number of specifications estimated (1,342,276) is substantially less than these 

values imply (219 sets of predictors * 12 specifications * 3 horizon periods = 18,874,368) for two 

reasons. First, some combinations of predictor variables are assumed to be mutually exclusive or 

would be perfectly colinear: examples include country-specific GDP and regional GDP, and 

variables in untransformed and log form. Second, some specifications failed to converge.  

Table C-2 shows the specifications of the models with the lowest population-weighted mean square 

error in the out-of-sample prediction for 2007. While all the models include GDP in various forms 

and lagged dependent variables, there is no clear specification that performs best across all horizon 

periods. Nor is there any obvious rationale to choose these three models in the absence of ex-post 



data on predictive performance. This simply highlights the difficulties for the regulator in selecting 

the best predictive model ex ante.  

Figure C-1 shows the simulation results using predictions of BAU from these approximate upper 

bounds; a crediting baseline set between 70% and 130% of estimated BAU; and various carbon 

prices. These simulations parallel those presented in Figure 7 of the main text. The comparison 

between Figure C-1 and Figure 7 indicates that the improvements in predictive accuracy from using 

the approximate upper bound bring a minimal payoff in terms of efficiency gains and reduced 

transfer costs. In the 5- and 10-year horizon scenarios, it is rare for more than 50% of offsets to be 

additional, even at the highest carbon price of $60 per tonne of CO2 reduced. The shapes of the 

curves relating participation decisions to the generosity of the crediting baseline are almost 

indistinguishable between Figure C-1 and Figure 7, indicating that the improvement in predictive 

power has almost no benefit for efficiency.  

These sensitivity tests suggest that the results are not driven by the econometric specifications for 

predicting BAU employed in the main body of the paper. Rather, the obstacles to sectoral crediting 

mechanisms for transportation can be seen as product of the inherent difficulties in predicting BAU 

emissions, with prediction errors being large in relation to expected abatement. 

 



Figure C-1 Alternative Price Scenarios (Approximate Upper Bound for BAU Prediction) 

 

 

Table C-1 Combinations of Models Estimated 

Variable Sets GDP   Lag GDP GDP2 GDP3 GDP*Annex I  
 

 GDP*Region  
(10 variables) 

GDP*Country 
(97 variables) 

Log GDP MANUF FINCON 

 OIL GAS Log OIL and  
Log GAS 

Lag OIL and  
Lag GAS 

Lag log OIL and  
Lag log GAS 

 Lagged dependent 
variable* 

TIME TIME2 TIME*Country 
(97 variables) 

 

Specifications    1 y
it
=α + X

it
β +ε

it
   Basic linear regression model 

2 Same as (1), but prediction is calculated as difference from last in-sample observation** 
3 log y

i
=α + X

it
β +ε

it
       Basic linear regression model with log DV 

4 Same as (3), but prediction is calculated as difference from last in-sample observation** 
5 y

it
=α

i
+ X

it
β +ε

it  Fixed effects model 
6 Same as (5), but prediction is calculated as difference from last in-sample observation** 
7 log y

it
=α

i
+ X

it
β +ε

it  Fixed effects model with log DV 
8 Same as (7), but prediction is calculated as difference from last in-sample observation** 
9 y

it
=α

i
+ X

it
β +ε

it
,     ε

it
= ρε

it−1
+µ

it  Fixed effects model with AR(1) term 
10 log y

it
=α

i
+ X

it
β +ε

it
,     ε

it
= ρε

it−1 +µit  

 

Fixed effects model with AR(1) term and log DV 
11 y

it
− y

it−1 = X
it
− X

it−1( )β +εit  First differenced model 
12 log y

it
− log y

it−1 = X
it
− X

it−1( )β +εit  First differenced model with log DV 
DV = dependent variable      
Country-specific coefficients (e.g. GDP*Country) are for Annex 1 countries only. 
*Dependent variable is lagged 1 and 2 years (for 1-year horizon), 5 years (for 5-year horizon) and 10 years (10-year horizon) 
**Calculated by adding the residual from the last in-sample observation to the prediction. 
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Table C-2  Estimates of BAU – Approximate Upper Bound 

 1-year horizon  
(data through 2006) 

5-year horizon  
(data through 2002) 

10-year horizon  
(data through 1997) 

Specification (3) –  Linear regression with 
log DV 

(4) –  Linear regression with 
log DV. Residual from last in-
sample observation added to 

prediction 

(10) – Fixed effects with 
AR(1) term and log DV 

GDP   0.000182 
   (2.00e-05) 
Lag GDP  -6.85e-06 1.01e-05 
  (8.05e-06) (5.36e-06) 
GDP2 -7.69e-10 -4.39e-09 -6.29e-09 
 (9.67e-11) (2.50e-10) (9.13e-10) 
GDP3  8.76e-15 5.22e-14 6.86e-14 
 (1.31e-15) (3.71e-15) (1.30e-14) 
GDP*Annex I   1.94e-05 
   (1.04e-05) 
MANUF  -3.87e-05 -1.28e-05 
  (8.25e-06) (1.80e-05) 
FINCON -6.08e-06 -2.83e-05  
 (1.76e-06) (4.09e-06)  
OIL   -0.00142 
   (0.00102) 
GAS   0.00132 
   (0.000891) 
Log OIL -0.0388   
 (0.0288)   
Log GAS 0.0523   
 (0.0317)   
Lag log OIL 0.0560   
 (0.0283)   
Lag log GAS -0.0815   
 (0.0333)   
TIME2 1.43e-06 7.93e-06  
 (5.02e-06) (1.08e-05)  
Lag 1 dependent variable 0.973   
 (0.0161)   
Lag 2 dependent variable -0.00984   
 (0.0158)   
Lag 5 dependent variable  0.813  
  (0.00772)  
Lag 10 dependent variable   0.0468 
   (0.0241) 
GDP*Region Yes Yes No 
Constant 0.209 0.764 4.886 
 (0.0360) (0.0342) (0.0371) 
ρ (autocorrelation coefficient)   .798 
Observations 3839 3254 1898 
R-squared 0.990 0.958 0.784 
RMSE for 2007 prediction* 26.2 80.3 95.5 
Standard errors in parentheses * Non-Annex I countries only, weighted by population  
 

 


