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Abstract 
Global Positioning System (GPS) data have become ubiquitous in many areas of transportation 

planning and research. The usefulness of GPS data often depends on the points being matched to 

the true sequence of edges on the underlying street network—a process known as “map matching.” 

This paper presents a new map-matching algorithm that is designed for use with poor-quality GPS 

traces in urban environments, where drivers may circle for parking and GPS quality may be affected 

by underground parking and tall buildings. The paper is accompanied by open-source Python code 

that is designed to work with a PostGIS spatial database. In a test dataset that includes many poor-

quality traces, our new algorithm accurately matched about one-third more traces than a widely 

available alternative. Our algorithm also provides a “match score” that evaluates the likelihood that 

the match for an individual trace is correct, reducing the need for manual inspection. 
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1. Introduction 
Global Positioning System (GPS) data have become ubiquitous in many areas of transportation 

planning and academic research in recent years. Household travel surveys often include a GPS-

equipped subsample, providing analysts with the path of each trip as well as data on demographics, 

trip purpose and the origin and destination (Bricka & Bhat 2006; Bricka et al. 2012). Commercial 

resellers maintain GPS datasets collected from cellphones and navigation systems. Smartphone apps 

and GPS receivers also make it simple for users to collect their own traces. 

The usefulness of GPS data often depends on the points being matched to the underlying street 

network—a process known as “map matching.” Analysis of congestion, parking availability, land-use 

types or other characteristics of the route relies on knowledge of the streets being traveled, not just 

the locations of individual GPS vertices. Moreover, the length of the GPS trace may differ from the 

actual route taken. The GPS trace could be longer (because of noise in the location data) or shorter 

(because GPS vertices are connected with straight lines, rather than following the street network), 

which in turn affects estimates of travel distances and speeds. 

Formally, the map-matching problem is to identify the true path, consisting of a sequence of 

street edges (i.e. blocks), given a sequence of GPS coordinates. Several different algorithms, 

discussed in detail in the following section, have been developed to map-match GPS data. However, 

there are three major shortcomings of existing approaches. First, some map-matching algorithms 

assume that the user takes the fastest route, and does not circle or deviate. This is an appropriate 

assumption in some contexts, but not in others, for example when drivers circle or “cruise” in 

search of a parking space (Millard-Ball et al. 2014; Hampshire et al. 2016). Second, published 

algorithms often leave the implementation to the user. Computer code is usually not made publicly 

available, at least in a form that is compatible with standard GIS tools. Third, when map-matching 

large datasets where the matches cannot be individually inspected, published algorithms do not 

provide a way to evaluate the likelihood that the match is correct. Global measures such as R2 can be 

helpful, but do not allow the accuracy of individual matches to be assessed, while integrity 

monitoring systems such as Li et al. (2013) rely on augmenting the GPS signal with supplemental 

data. 

This paper presents a new map-matching algorithm that is designed for use with poor-quality, 

heterogeneous GPS traces in urban environments, where drivers may circle for parking and GPS 

quality may be affected by underground parking, tall buildings and similar obstacles. The algorithm 

considers the distance between GPS locations and candidate streets (a geometric component); the 
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ratio of GPS path length to candidate map-matched path lengths (a topological component); and the 

implied speed of a map-matched path (temporal component). In combination, these components 

provide a robust way to deal with inaccuracies in the underlying GPS trace. We consider poor-

quality data to be typified by sparse data (e.g. 30 seconds or more between points), noisy 

measurements, unrealistic movements, and spatial inaccuracies of 50m or more that would lead an 

algorithm based on only one of these components astray. Examples of the types of poor-quality 

traces used in this paper are shown in Figure 3 and Figure 5. 

The paper is accompanied by open-source Python code that is designed to work in a GIS 

environment, specifically with a PostGIS spatial database. Users can use this code to immediately 

apply the algorithm to match their own traces. Moreover, we provide a new method to assess the 

likelihood that a good match has been made, enabling the automated analysis of noisy GPS traces 

without the need for manual inspection of the matches. Thus, our major contribution is to make 

easy-to-use map-matching tools available to the GIS community, using two common tools in GIS 

analysis—Python and PostGIS. 

We begin with a brief review of map-matching algorithms and their implementations. We then 

discuss our own algorithm, before presenting the results of a test on two GPS datasets—one 

collected by the authors, and one from a commercial provider. We compare the speed and accuracy 

of our algorithm to a freely available alternative, GraphHopper. Finally, we introduce a method for 

automated estimation of the quality of the match, that can help identify matches that should be 

discarded or warrant inspection by the analyst. 

2. Review of Map-Matching Algorithms 
We focus here on post-processing algorithms that are applied to previously collected datasets, rather 

than real-time algorithms that are useful in navigation and vehicle location applications. (For 

discussions of real-time approaches, see, for example, Quddus et al. 2007; Velaga et al. 2009.) Real-

time approaches, while accounting for the vast majority of the published literature, are less relevant 

for the discussion here because they are primarily concerned with identifying current position, rather 

than the integrity of the route as a whole. For example, a real-time algorithm can jump to a new 

position without the constraint of ensuring a feasible route from the previous position (Van Dijk & 

De Jong 2017). This review is not intended to be comprehensive, but rather to identify some of the 

main approaches that have been used in the literature, and some of their strengths and weaknesses. 



	 	 	

	

4	

Two principal typologies have been developed to help understand the differences between 

competing map-matching algorithms. One distinction is between local algorithms, which work 

incrementally and find the best match for individual points or groups of points; and global 

algorithms, which attempt to match the entire trace at once. In one global approach, Brakatsoulas et 

al. (2005) use measures of curve similarity to find the best match. Another distinction is between (i) 

geometric algorithms, which rely on the distance between GPS points and candidate edges in the 

road network, and sometimes also incorporate heading information; and (ii) topological algorithms, 

which take into account the connectivity of the road network.  

In practice, the most successful algorithms blend characteristics from local and global and 

geometric and topological approaches. Typically, a likelihood or scoring function, which is 

comprised of both geometric and topological components, is applied to candidate paths. The 

geometric score can be simply the inverse distance of each GPS point from the candidate path (e.g. 

Camargo et al. 2017). A more complex geometric approach generates match probabilities as a 

nonlinear function of distance, based on a structural model of GPS error (e.g. Newson & Krumm 

2009). The topological score, meanwhile, can be based on the difference between the network 

distance along the candidate path, and the Euclidean (or great circle) distance between adjacent GPS 

points (Lou et al. 2009; Newson & Krumm 2009). Alternatively, the topological score could be 

calculated based on a routing algorithm such as Dijkstra (Wei et al. 2012; for a related approach, see 

Van Dijk & De Jong 2017). For a useful compilation of different scoring or probability functions, 

see Wei et al. (2012). 

The tradeoff between local and global approaches can be resolved through retaining multiple 

path candidates as each point in the trace is processed incrementally, before choosing the best-

scoring candidate in the final step. Such a “Multiple Hypothesis Technique” avoids locking in on a 

single solution that may be rendered less likely by subsequent points on the trace, and in effect 

allows later GPS points to inform the matching score of previously processed points. One example 

of an algorithm based on the Multiple Hypothesis Technique is provided by Marchal et al. (2005) 

and refined by Schuessler and Axhausen (2009); this algorithm has been used to map-match large 

datasets such as the California Household Travel Survey.  

A more formal variant of the Multiple Hypothesis Technique uses a Hidden Markov Matrix 

(HMM), under which the states of the matrix represent edges in the road network. State probabilities 

(equivalent to a geometric scoring function) indicate the likelihood of observing a given GPS point 

conditional on the vehicle being in a given state (i.e., on a given edge). Transition probabilities 
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(equivalent to a topological scoring function) indicate the probabilities of moving from one state to 

another, i.e. moving between different edges. The Viterbi algorithm can then be applied to find the 

optimal path through the matrix (Newson & Krumm 2009; Wei et al. 2012). A refinement by Li et 

al. (2015), meanwhile, generates spatial-linear clusters of GPS points, rather than treating each point 

independently; a HMM model is then used to identify the optimal combination of the clusters. 

Typically, a map-matching paper will describe its algorithm, provide evidence as to its speed and 

accuracy, and sometimes compare its performance against other map-matching algorithms. 

Comparison is hampered, however, in several ways. First, each algorithm has its own strengths and 

idiosyncrasies. For example, the algorithm by Schuessler and Axhausen (2009) explicitly disallows 

circling (i.e. repeating any sequence of links) and U-turns, which may increase the overall quality and 

speed of the matching, but makes it impossible to explore behaviors such as cruising for parking. 

Camargo et al. (2017), meanwhile, design their algorithm for interurban freight trips, and implicitly 

disallow circling through assuming the driver takes the shortest path using the set of edges that are 

within a given distance from the set of GPS vertices. In the context of real-time map-matching, 

Velaga et al. (2009) note that different scoring functions are required in different contexts, such as 

urban, suburban and rural areas. 

The second obstacle to comparisons is that many papers present their algorithm without 

accompanying implementation code, or provide code in a form that cannot easily be adapted to 

other geographic contexts or computer platforms. While some researchers have provided 

standardized test traces for purposes of comparison (e.g. Newson & Krumm 2009), it is not 

immediately evident how to apply the results to different types of GPS data, such as traces with 

lower spatial accuracy or trips that involve circling for parking. From the perspective of the user, 

meanwhile, the application of the algorithm to their own datasets often requires substantial 

programming knowledge to adapt or even run the provided code, which is typically written in Java. 

Alternatively, users must develop their own implementation from scratch. One main exception is the 

GraphHopper package.1 GraphHopper is written in Java and based on the Newson and Krumm 

algorithm (2009), and can be run as a command-line tool without any programming knowledge. 

Another exception is the Camargo et al. (2017) open-source algorithm.  

																																																								
1 GraphHopper can be downloaded at https://github.com/graphhopper/map-matching. In the analysis below, we use 
version 0.8.2, which was the most recent version as of July 2017. 
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3. The pgMapMatch Algorithm 
In this section, we present our implementation of the pgMapMatch map-matching algorithm. 

Formally, we wish to identify the true path, i.e. sequence of edges on the street network, 𝑅 =

[𝑟&, 𝑟(, 𝑟), … , 𝑟+]  given a set of GPS points 𝑍 = [𝑧&, 𝑧(, 𝑧), … , 𝑧/]. An edge in this instance is a 

directed link in the street network between two nodes (normally intersections).  

Our approach uses a three-part quasi-likelihood function to rank candidate paths, comprising 

the following components: 

§ A geometric component, based on the distance between each vertex on the GPS trace and 

the corresponding vertex on each candidate path.  

§ A topological component, based on the ratio of segment lengths of the GPS trace and 

candidate path (a segment is defined as the path between two vertices on the GPS trace). 

§ A temporal component, based on the implied speed of each segment of the candidate path. 

The geometric and topological components are similar to those employed elsewhere in the 

literature (e.g. Velaga et al. 2009; Wei et al. 2012). In terms of the algorithm, our main innovation is 

the addition of a temporal component, which takes into account the feasibility of moving between 

candidate vertices in a given amount of time. For example, a candidate path is unlikely if it implies 

moving at a speed of 100 km h-1 on streets that have a speed limit of 50 km h-1. With a few 

exceptions (notably Lou et al. 2009), this temporal component is rarely found in the map-matching 

literature. 

We do not consider data on the quality of the positioning fix (e.g. horizontal dilution of 

precision or number of satellites) nor the heading, which may improve the quality of the match, but 

are not consistently available in publicly available GPS datasets. 

3.1 Geometric likelihood 
The geometric likelihood is based on a normally distributed function of the distance of each point to 

candidate edges (Eq. 1), as in Newson and Krumm (2009). Each point represents a vertex on the 

GPS trace, as shown in Figure 1. The intuition here is that the most-likely path will lie close to each 

GPS vertex. The normal distribution accounts for errors due to imprecision in the GPS coordinates. 

It also accounts for the width of the street, given that the path (represented by the street centerline) 

will be a short distance from a true GPS location within the street right-of-way. The left-hand panel 

of Figure 2 shows the shape of the likelihood function: 
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 𝑝1(𝑧3|𝑟5) = 𝑓1(|‖𝑧3 − 𝑔(𝑟5, 𝑧3)‖|) (Eq. 1) 

 

Where: 𝑓1(𝑥)~𝑁(0, 𝜎@), and |‖𝑧3 − 𝑔(𝑟5, 𝑧3)‖| denotes the absolute distance between observed 

point 𝑧3 and the closest point to 𝑧3 on the candidate edge 𝑟5.  

In common with the other parameters introduced subsequently, we estimate 𝜎@ through an 

informal iterative process, examining the likelihoods of successful and unsuccessful matches. (Due 

to the heterogeneity of our sample of GPS traces, the distances between the GPS vertex and map-

matched position do not follow a regular distribution.) We do not attempt to optimize more 

formally given (i) computational limitations; (ii) the likelihood that the optimum value of 𝜎@ is 

unique to our dataset, and in fact 𝜎@ is a user-defined parameter in our open-source code; and (iii) 

that optimizing for 𝜎@ could only improve the quality of our matches, and thus our evaluation 

underestimates the potential performance of the algorithm.  

3.2 Topological likelihood 
The topological likelihood is based on the ratio of the length of the GPS trace to the length of the 

candidate path. It is computed on a segment-by-segment basis, where a segment is defined as the 

path between two vertices on the GPS trace. The intuition is that the most-likely path will have a 

similar length to the GPS trace. The probability function is a Students’ t-distribution with 20 degrees 

of freedom, as shown in Eq. 2 and the center panel of Figure 2. The t-distribution rather than a 

normal distribution is used because of its fatter tails, useful in accounting for situations where a one-

way system precludes a direct route between two points.  

Formally, the length of a path is given as: 

𝑝/A𝑧3,𝑧3B&|𝑟5, 𝑟CD = 𝑓/ Emax	 I0, ||@J,@JKL||

MNO(PQ,@J),OAPR,@JKLDS
− 1UV (Eq. 2) 

 

Where	𝑓/(𝑥)~𝑡(0, 𝜎3, 20), and 𝐷 N𝑔(𝑟5, 𝑧3), 𝑔A𝑟C, 𝑧3B&DS gives the network distance of the 

candidate path segment.  

If no candidate path is found between the two candidate edges, 𝑝/ is set to zero.  As before, the 

𝑔() function denotes the closest point on the candidate edge to the GPS point. The network 

distance includes the portion of 𝑟C that remains to be traveled, the portion of 𝑟5 that will be traveled 
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on this segment, and the length of any intermediate edges. In some cases, 𝑟5 and 𝑟C refer to the same 

edge. Where a path includes intermediate edges (i.e., when 𝑖 ≠ 𝑗 + 1), we use the Dijkstra algorithm 

as implemented in the pgrouting package2 to compute the shortest route between the two candidate 

edges. This last step is similar to the “connected subset” procedure (Van Dijk & De Jong 2017), 

which uses the Dijkstra algorithm to infer the path between consecutive points. 

3.3 Temporal likelihood 
The temporal likelihood is based on the implied speed of the candidate path, as a fraction of the 

posted speed limit, computed on a segment-by-segment basis. For example, if a 20m segment of the 

path is traversed in one second, the implied speed is 20m per second or 72 km h-1. On a street with a 

speed limit of 50 km h-1, this is 1.44 times the speed limit. The temporal likelihood helps to reduce 

the chances of a match that involves improbably high speeds. 

In cases where the implied speed is less than the speed limit, the probability function follows an 

exponential distribution. This likelihood function rewards shorter movements, but the shape of the 

function means that there is little difference in likelihood between a speed of 0.8 times the limit and 

0.9 times the limit. Once the speed increases beyond the limit, however, we assume that higher 

speeds become much less likely, as reflected in the shift to a normal distribution in Eq. 3 and shown 

in the right-hand panel of Figure 2. As with the topological likelihood, we use the Dijkstra algorithm 

to compute the length of each candidate path segment in cases where intermediate edges are 

involved. As discussed below, even if speed limit data are not available, they can be inferred from 

the street classification (e.g. freeways vs primary vs secondary routes). 

Formally, the temporal likelihood is calculated as: 

 

𝑝^A𝑧3,𝑧3B,&, 𝑠3,𝑠3B&|𝑟5, 𝑟CD = 𝑓^ I
`NO(PQ,@J),OAPR,@JKLDS

aJKaJKL
U (Eq. 3) 

 

Where	𝑓^(𝑥)~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆) if 	𝑥 ≤ 1	else 𝑓^(𝑥)~𝑁(1, 𝜎^) + 𝑐	, 𝑐 is a constant so the two 

functions are equal at 𝑥 = 1,  𝑆 N𝑔(𝑟5, 𝑧3), 𝑔A𝑟C, 𝑧3B&DS indicates the seconds to traverse, at the 

speed limit, the road network from the closest point on candidate edge 𝑟5 to edge  𝑟C, and 𝑠3,𝑠3B& 

give the timestamps (in seconds) of vertices 𝑠3 and 𝑠3B&.  
																																																								
2 pgRouting is a cross-platform, open-source extension to the PostGIS and PostgreSQL geospatial database. It can be 
downloaded at http://pgrouting.org. In this paper, we use version 2.4.1.  
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Figure 1  Example Trace with Candidate Match Points 

	
	

 

Figure 2  Shape of Likelihood Functions  
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3.4 Combined likelihood 
The quasi-likelihood of each candidate path is calculated as a weighted product of the geometric, 

topological and temporal likelihoods (Eq. 4), and the highest-likelihood path is selected as the best 

match. We consider all possible paths comprised of edges within 50m of each GPS point (70m on 

freeways, to account for their wider right-of-way given that the distance is measured from the street 

centerline). The 50m radius captures almost all true edges, while providing a balance between 

inclusivity and computational time which roughly increases with the square of the radius. 

𝑝(𝒛, 𝒔|𝒓) = 𝑝1(𝑧&|𝑟5)∏ 𝑝1A𝑧3|𝑟CD𝑝/A𝑧3,𝑧3B&|𝑟p, 𝑟qD
rs
𝑝^A𝑧3,𝑧3B,&, 𝑠3,𝑠3B&|𝑟t, 𝑟uD

rv
+
3w(  (Eq. 4) 

	
Where: terms are defined in Eqs 1, 2 and 3 

Suppose that each GPS point 𝑧3 has 𝑘3 edges within 50m, and thus 2𝑘3 directed edges (given 

that travel can occur in either direction). Then the number of candidate paths for a trace with 𝑁 

points is given by the product of the options at each timestep: ∏ 2𝑘3+
3w& . For example, a one-minute 

trace with one-second resolution and 10 edges within 50m of each point yields 20yz candidate 

paths.  

We make this problem tractable through estimating the most-likely path via a Hidden Markov 

Model using the Viterbi algorithm, as in (Newson & Krumm 2009). The geometric likelihood 

provides the probability of observing a HMM state, and the product of the topological and temporal 

likelihoods provides the probability of moving between candidate states. 

3.5 Complicating factors 
One particular complication is posed by U-turns, represented by a repeated edge with opposite 

directions of travel. It is necessary to allow for U-turns, given that they are a reality, particularly in 

urban environments (Figure 3 Panel A provides one example). However, in most cases, a “U-turn” 

simply reflects imprecision or noise in the GPS signal, causing a point to be closer to a perpendicular 

street than to the path of travel. Therefore, our algorithm penalizes U-turns through the temporal 

likelihood function by adding a penalty of half the time to traverse the median edge in the street 

network.  

Another complication is posed by errant points in the GPS dataset (an example is shown in 

Figure 5). Some, but not all, of these points can be removed by pre-filtering the dataset. Our 

algorithm allows a point to be skipped at a penalty equivalent to traversing a segment at three times 

the speed limit, using the temporal likelihood function. 
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4. Assessing Performance 

4.1 Data sources 
We assess the performance of our algorithm against two sets of GPS traces. The first (hereafter 

called the “author dataset”) was collected by the authors in San Francisco, California, and aims to 

replicate the search for parking in dense urban neighborhoods. It is discussed further in Karlin-

Resnick et al. (2016). We selected eight San Francisco neighborhoods and randomly selected three 

addresses in each neighborhood. We then sent drivers into the field with instructions to find a 

parking place as near to that destination as they could. Drivers were equipped with Dash Command, 

an iPhone app that could log their position thus creating a GPS trace of each trip. The value in this 

dataset is twofold.  First, the introduction of circuity due to parking search provides the challenge we 

sought to address.  Second, the dataset is well understood making it a good control. 

The second (hereafter called the “commercial dataset”) was purchased from a commercial 

vendor, and also consists of traces with trip ends in San Francisco. Pre-cleaning involved removing 

vertices with an implied speed of more than 120 km h-1, and eliminating traces with fewer than three 

vertices. Descriptive statistics are shown in Table 1. 

The heterogeneity of the commercial sample in particular provides a challenging test set for any 

algorithm. First, the traces are derived from a range of devices, including in-vehicle navigation 

devices and smartphones, but there is no metadata that indicates the type of device used. Second, 

the resolution of the traces (i.e., the time between adjacent GPS vertices) varies from 1 second to 

288 seconds, and varies within as well as between traces. Third, San Francisco provides a challenging 

physical environment because of the prevalence of hills, tall buildings, tunnels, and interior or 

underground off-street parking, all of which compromise the accuracy of a GPS signal. Fourth, in 

the case of the commercial dataset, a stratified sample was used, comprised of 192 traces that 

preliminary work indicated were hard to match or included circuitous paths, and a further 26 traces 

selected at random from the full commercial dataset. 

In both cases, the street network data are from OpenStreetMap, and were imported to a 

PostGIS database using the osm2po package. Speed limit data is inferred by osm2po if not explicit 

in the OpenStreetMap data, based on the street classification (e.g. primary, secondary, residential). 

The conversion between street classification and inferred speed limit is configurable by the user. 

Most of the streets in our empirical test-case have inferred speed limits, and thus the performance 

reported here would likely be better if actual speed-limit data are present. 
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Table 1 Trace Characteristics 

 Commercial dataset Author dataset 
Number of traces 218 71 
Resolution (mean seconds between points)   
Mean  12.6 1.1 
Range 1-189 1-4.3 
Resolution (maximum seconds between points)   
Mean 26.2 4.3 
Range 1-288 1-89 
Length of trace (m)   
Mean 1164 715 
Range 408-28611 250-3111 
 

4.2 Match performance 
The accuracy of pgMapMatch can be assessed by comparing the sequence of edges in the matched 

path to that in the true path. For the author dataset, the true path was known. For the commercial 

dataset, the true path was inferred visually from the GPS trace, where this was possible. A match 

was considered unsuccessful if even a single edge was missing from the matched path or incorrectly 

inferred, regardless of how well the remainder of the trace was matched. 

In the author dataset, all but one of the 71 traces were successfully matched. In the commercial 

dataset, 180 of the 218 traces were successfully matched, 26 matches were unsuccessful, and the true 

path could not be inferred in 12 cases, giving a success rate of 87%. Figure 3 shows examples of a 

successfully matched trace (panel A), an unsuccessful match (panel B), and a match where the true 

path could not be inferred (panel C). 

The success rate itself is not meaningful, since it depends on the quality of the GPS dataset, 

which in this case was selected to consist of hard-to-match traces. Thus, a low success rate is to be 

expected. A more useful comparison is to alternative software tools.  The open-source map-

matching package GraphHopper, described earlier, had a success rate of 65% on the same dataset, 

using an identical GPS tolerance of 50m. GraphHopper successfully matched 3 traces that our 

algorithm did not, and failed to match 50 of our successes. In general, these failed attempts are for 

traces with noise in the GPS signal, where the GraphHopper algorithm introduces erroneous loops 

around the block. Because our algorithm takes into account the temporal likelihood, we can avoid 

introducing these erroneous loops which usually involve unrealistic speeds. GraphHopper is based 

on the Newson and Krumm algorithm (2009); while more sophisticated algorithms are available, the 
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relevant comparison for purposes of this paper is to a tool that has accompanying, ideally open-

source, software that can be used by research and planning practitioners. 

Using a 2008 Mac Pro desktop computer with 16GB RAM, the algorithm took a mean of 14 

seconds to match each trace; this average is skewed by some complex traces that took 10 minutes or 

more to match. The median trace was matched in 5.2 seconds, compared to 0.8 seconds for 

GraphHopper. Our speed can be improved by resampling high-resolution traces from, for example, 

one second to five seconds, with no or minimal loss in accuracy. However, if speed is the primary 

concern, our algorithm, which prioritizes accuracy over speed, may not be the best choice. 

 

 

Figure 3 Examples of Matched Paths 

 

4.3 Predicting accuracy 
As discussed in the introduction, the inevitable presence of inaccurate matches poses a key challenge 

with map-matching of large datasets, where manual inspection of the results is infeasible. Geocoding 

of address data represents an analogous problem, where a geocoded location may be returned if 

there is uncertainty due to a misspelled address or multiple potential matches. In the case of 

geocoding, algorithms typically return a match score or similar indication of the likelihood of success 

(Karimi et al. 2004). In this subsection, we demonstrate how an analogous match score can be 

quantified for map matching of GPS data. 
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We predict the accuracy of the matches for the commercial dataset only, given that almost all of 

the traces in the author dataset are successfully matched. Our approach relies on a logistic regression 

model that estimates the probability of a successful match as a function of a set of predictor 

variables. Our candidate predictor variables are as follows: 

• Log likelihood for each point on the most-likely path, computed according to Eqs 1-3. We 

have six variables in this category, corresponding to the mean and minimum for each of the 

geometric, topological and temporal likelihood functions.  

• Ratio of the length of the GPS trace to the length of the most-likely path, and also its 

inverse. A ratio close to one is indicative of a successful match. This variable can be seen as a 

global version of the topological likelihood, but computed over the trace as a whole rather 

than on a segment-by-segment basis. 

• Fréchet distance between the GPS trace and the most-likely path. Fréchet distance is a 

measure of curve similarity, and can be imagined as the minimum leash length required for a 

dog to walk on the GPS trace while the human walks on the most-likely path. Fréchet 

distance has been occasionally used in map-matching algorithms (Brakatsoulas et al. 2005); 

here, we employ it as a post-estimation quality measure. 

• Resolution of the trace, in terms of the mean and maximum number of seconds between 

GPS points. 

Table 2 shows the results of three regression specifications. Model 1 includes all the variables, 

including non-linear terms. Model 2 includes only the variable (Fréchet distance) that has a large and 

statistically significant effect in Model 1. Model 3 adds a measure of the temporal likelihood, which 

is not captured by Fréchet distance. 

In all cases, we restrict the sample to traces with a mean temporal resolution of 30 seconds or 

less. We estimate each model on 70% of the sample, and hold back the remainder for validation 

purposes. Table 2 indicates the proportion of successful matches for each model in both the 

estimation and validation samples. A threshold probability of 0.7 is used to convert the model’s 

predictions (which are expressed as the probability of a good match) to a binary success or fail 

prediction. A lower threshold probability will yield more false positives, i.e. matches that are 

predicted to be successful but are not in reality, while a higher threshold probability will yield more 

false negatives. 
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Overall, the models perform similarly as measured by AIC and predictive accuracy. However, in 

Model 1, most coefficients are estimated very imprecisely, as indicated by the number of large yet 

insignificant coefficients, likely because of collinearity. We choose Model 3 as our preferred 

specification because it is the most parsimonious model that incorporates all three dimensions: 

distance and topology by the Fréchet distance, and temporal by the minimum log likelihood. 

Intuitively, a successful match will have a matched path that lies close to the original GPS trace, and 

no segments with an implied speed well above the speed limit. Figure 4 indicates that Model 3 also 

discriminates well between successful and unsuccessful matches.  

Closer inspection of both the false positives and false negatives is revealing. Figure 5 shows two 

false positives (incorrect matches) in the left and center panels, and one false negative (a correct 

match) in the right panel. In the left panel, the GPS trace backtracks on the initial edge and then 

heads to the top portion of the figure, following a gap in the sequence of GPS vertices, but the U-

turn and backtracking is not identified by the matching algorithm. In the center panel, the opposite 

problem arises, with noise in the GPS signal causing the algorithm to erroneously introduce two U-

turns. In the right panel, the trace is successfully matched, but the circuitous route (due to one-way 

streets) and the low temporal resolution of the trace means that the Fréchet distance is large. In 

general, similar issues—U-turns, GPS signal noise and low resolution—can explain the other false 

negatives and false positives. 

We compute match scores for the traces in the author dataset, and find that the scores provide 

an excellent indication of the quality of the matches. The one trace that did not match correctly has 

a suitably low score (0.05). Setting the threshold probability at 0.7 yields two false negatives, with 

match scores of 0.61 and 0.68. The remaining traces in the author dataset all have scores greater 

than 0.85, with most traces having scores greater than 0.95. 
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Figure 4 Predicted Match Probabilities 

 

Table 2 Regression Estimates 
 Model 1 Model 2 Model 3 
Intercept  -0.102 (10.453) 4.375*** (0.667) 4.529*** (0.710) 
Fréchet distance       -0.0483*** (0.0161) -0.0463*** (0.00952) -0.0447*** (0.00978) 
Distance log likelihood (mean)  -2.035 (3.030)   
Distance log likelihood (minimum)   -0.00914 (0.309)   
Topological log likelihood (mean) -1.913 (2.583)   
Topological log likelihood (minimum)  0.0766 (0.0470)   
Temporal log likelihood (mean) 0.0382 (0.166)   
Temporal log likelihood (minimum) -0.000688 (0.00330)  0.00201** (0.00121) 
Length ratio of matched path: trace    2.629 (7.021)   
Length ratio of trace: matched path 0.220 (3.789)   
Seconds between points (mean) -0.0415 (0.0769)   
Seconds between points (maximum) -0.00832 (0.0302)   
N (estimation sample) 135 135 135 
AIC 69.11 61.59 61.07 
Estimation sample:    
% predicted correctly 96% 90% 91% 
False positives 5 7 6 
False negatives 1 6 6 
Validation sample:    
% predicted correctly 84% 91% 91% 
False positives 4 3 3 
False negatives 5 2 2 
Standard errors are in parentheses. *p<0.10  **p<0.05  ***p<0.01 
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Figure 5 False Positives and a False Negative 

	

5. User Implementation 
Our Python code is available under an open-source license at 

www.github.com/amillb/pgMapMatch. The code enables a user to match a GPX file or a PostGIS 

table of GPS traces, using a simple command-line function. No Python knowledge is required unless 

the user wishes to adapt the code, for example to use custom likelihood functions. A configuration 

file allows parameters such as the distance radius within with candidate edges are considered, and the 

standard deviations of the likelihood functions, to be altered. The matching function returns: 

§ A sequence of IDs for each edge in the most-likely path 

§ The geometry of the most-likely path 

§ The probability that the match is correct, based on the logistic specification in Model 3 

shown above, or another model estimated by the user 

The key dependencies are the PostgreSQL database application, with PostGIS and pgrouting 

installed. Full instructions are provided on the GitHub site.    
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6. Conclusion 
At first glance, map-matching of GPS data appears to be a simple problem. Visual inspection of a 

GPS trace usually enables a human to identify the route that was followed. However, translating this 

human intuition into algorithmic form—necessary if large-scale travel survey and similar datasets are 

to be matched—is complex. An algorithm may need to consider the distance between vertices on 

the GPS trace, and the feasibility of a route in terms of implied speed and topological similarity. The 

algorithm should also identify any points that may need to be dropped due to GPS error. Further 

complications are introduced by missing streets from the street-network dataset, or where a vehicle 

leaves the street network to travel through a parking lot or gasoline station. 

While the published literature includes a range of map-matching algorithms, the number of 

software tools available to analysts is small. To our knowledge, none are provided as open-source 

code in Python—the programming language of choice for GIS analysis. In this paper, we provide a 

practical tool that enhances existing map-matching algorithms, particularly for poor-quality, 

heterogeneous traces in urban environments, which are characterized by noisy GPS signals, U-turns 

and circling.  

Erroneous map-matching of GPS traces can bias the analysis of travel survey data, for example 

through suggesting that drivers circle for parking when they do not, or that they take longer routes 

to their destinations. While no algorithm is likely to match GPS data with 100% accuracy, our 

software tool mitigates this problem by introducing a regression-based match score, which indicates 

the probability that a trace is successfully matched. The analyst can then manually inspect traces 

below a certain probability threshold, or discard them altogether.  

Further improvements to our algorithm could focus on faster performance, and also on 

identifying when points should be dropped from the GPS trace, particularly in the context of erratic 

signals when a vehicle enters an off-street parking facility. By providing our code under an open-

source license, others can build off of the work that we present here. 
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