
Evaluating the Impacts of Performance-Based Parking 
Comment on Pierce and Shoup 

June 2014 
 

This is an Accepted Manuscript of an article published in the  

Journal of the American Planning Association, 79(4): 330-336  

available online: http://www.tandfonline.com/10.1080/01944363.2014.918481 

 

Adam Millard-Ball 
Assistant Professor, Environmental Studies Department 
University of California, Santa Cruz 
Santa Cruz, California 95064 
adammb@ucsc.edu 

Rachel R. Weinberger 
Director of Research and Policy Strategy 
Nelson\Nygaard Consulting Associates 
New York, New York 11217 
rweinberger@nelsonnygaard.com 

Robert C. Hampshire 
Assistant Professor of Operations Research and Public Policy 
Heinz College 
Carnegie Mellon University 
Pittsburgh, Pennsylvania 15217 
hamp@andrew.cmu.edu 

  



 

 2 

Introduction 
Gregory Pierce and Donald Shoup (2013) provide a long-awaited analysis of San Francisco’s 

SFpark – the most sophisticated parking pricing program in the U.S., if not the world. They 

analyze the impact of performance-based rate changes during the first year of SFpark’s 

operations, and conclude that there have been substantial, measurable impacts on parking 

occupancy. The average price elasticity they compute is -0.4, meaning that a 10% increase in 

price is associated with a 4% reduction in demand.  

In principle, a performance-based parking system such as SFpark, which adjusts prices in 

a bid to achieve a target occupancy for curb parking, is an excellent way to reduce congestion 

and to improve the driver experience. Their finding represents a remarkable impact of the 

SFpark program in an extremely short time, and an impact that is substantially faster and larger 

than shown in other analyses, including our own (Millard-Ball et al. 2014) and others (Chatman 

& Manville 2014). 

We agree with Pierce and Shoup’s policy recommendations, which build on much of 

Shoup’s earlier work (e.g. Shoup 2005). However, their empirical analysis ignores the 

endogeneity of prices (defined and discussed below), and specifically the possibility that 

fluctuations in demand trigger price changes under SFpark’s rate adjustment rules.  

In this note, we simulate parking demand as a purely random process, with price having 

no impact on demand. In 10,000 simulations, we recreate similar price elasticities to those of 

Pierce and Shoup. Thus, we conclude that their findings are largely spurious, caused by the 

statistical phenomenon of reversion to the mean. Using an alternative method – the regression 

discontinuity design – that is more robust in this type of situation, we show that there is no 

evidence of short-run impacts on occupancy from individual rate changes. 

We believe that it is too soon to draw firm conclusions about the impact of performance-

based parking pricing programs such as SFpark. The takeaway for practice is that short-run 

elasticities are likely to be substantially less than those reported by Pierce and Shoup. After one 

year, fluctuations in demand may be influencing price more than price is influencing short-run 

demand. Similar evaluations need to explicitly account for endogeneity and the design of the 

rate-change mechanism. 
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Elasticities as a Statistical Artifact 
To understand why Pierce and Shoup’s results do not primarily reflect the impact of price 

changes on occupancy, it is first necessary to understand how SFpark adjusts rates. (For more 

general background, the reader is referred to their article, or to the SFpark website at 

www.sfpark.org.) The San Francisco Municipal Transportation Agency (SFMTA) established a 

target occupancy range of 60-79% on each metered block. If occupancy is 80% or greater, meter 

rates increase by 25 cents per hour, up to a maximum of $6. If occupancy is below 60%, then 

meter rates decrease by 25 cents, or by 50 cents if occupancy is below 30%, to a minimum of 25 

cents. In general, rates are adjusted every two months.  

Immediately, it is evident that the relationship between price and demand runs in both 

directions. Parking demand affects prices (by design), and prices are expected to affect parking 

demand. In statistical terms, prices are “endogenous” because there is a two-way relationship 

between prices and the variable of interest, parking occupancy. For a more detailed discussion of 

endogeneity from a statistical perspective, the reader is referred to a text such as Wooldridge 

(2012), but we illustrate the basic problem here with an example.  

Consider a block that is in equilibrium at 75% occupancy, just within SFMTA’s target 

range. There is some random variation in demand, and so in some rate adjustment periods, 

occupancy exceeds 80%, but expected occupancy in the following rate adjustment period is still 

the equilibrium level of 75%. Now recall that SFMTA’s rate adjustment rules call for rates to be 

increased if occupancy reaches 80% or more. The rate is increased according to SFpark’s rules, 

but demand would have fallen back towards its equilibrium level of 75% regardless of the price 

increase. It is an example of reversion to the mean – the tendency of extreme values to revert to 

their normal range on subsequent observations. Yet, it could appear from the data that the 

reversion to the long-run equilibrium is a behavioral response to the price change. 

Indeed, this story applies to any block with equilibrium occupancy in SFMTA’s target 

range. Any random fluctuation that takes occupancy outside the 60-79% range will be followed 

by a price change (because of SFMTA’s rate adjustment rules), and more likely than not, a 

reversion to the 60-79% range in subsequent months.   
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Another example of endogeneity occurs when occupancy is driven by unrelated events.  

Suppose that a new restaurant opens on a block, and grows in popularity over time. Occupancy is 

likely to increase in each rate adjustment period (because of the restaurant), but meter prices will 

also increase over time (because of SFMTA’s rate adjustment rules). In this example, elasticities 

might well be positive, giving rise to the erroneous conclusion that higher prices increase 

demand. As with the case of random fluctuations in demand, a naïve analysis that does not 

account for endogeneity runs the risk of bias. 

Simulating Parking Elasticities 
We use the same data as Pierce and Shoup.1 First, we replicate their results (with some minor 

inconsistencies). Second, we simulate random changes in demand, based on the average 

observed demand and corresponding standard deviations, and calculate the simulated elasticities. 

Prices under SFpark vary not only by block, but also by six timebands (before noon; 

noon to 3pm; and after 3pm, on both weekdays and weekends). Following Pierce and Shoup we 

calculate midpoint elasticities for each of the 5,332 price changes2 in the first year of SFpark 

operations; this encompasses six rate adjustments between August 2011 and August 2012. In a 

further 2,872 cases, prices remained unchanged, either because occupancy was in the target 

range or to maintain the minimum price of $0.25/hour.  

Our random simulation of parking demand proceeds as follows. For each block and 

timeband, the SFMTA spreadsheet provides six datapoints representing the average occupancies 

in the run up to each of the six rate adjustments, plus one additional datapoint following the 

August 2012 rate adjustment. For each block and timeband, we calculate the mean and standard 

deviation of these seven datapoints.  

                                                
1  The data are available on the SFMTA website: http://sfpark.org/resources/meter-rate-adjustment-
spreadsheet-april-2013/, last accessed December 19, 2013. 
2 Pierce and Shoup report 5,294 price changes; the slight discrepancy may be caused by dropping certain 
blocks with incomplete observations. Note that this total only includes rate changes for which elasticities 
can be computed; it excludes observations where ‘after’ occupancy data are missing. 
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We then simulate ‘before’ and ‘after’ occupancy for each block/timeband as a random 

deviation from the mean occupancy. The random deviation is drawn from a mean-zero normal 

distribution using the block- and timeband-specific standard deviation. We include a serial 

autocorrelation term (ρ = 0.22, estimated from the SFMTA data) to account for the correlation 

between ‘before’ and ‘after’ observations that would be expected given that there may be block-

specific time trends. Formally, we simulate occupancy as follows: 

𝐵𝑒𝑓𝑜𝑟𝑒_𝑂𝑐𝑐!" = 𝜇!" + 𝜖!"  
𝐴𝑓𝑡𝑒𝑟_𝑂𝑐𝑐!" = 𝜇!" + 𝜌𝜖!" + 𝛿!" 

 
where 𝜇!" is the mean occupancy for block i in timeband t; 𝜌 is the serial autocorrelation 

term; 𝜖!" , 𝛿!"~𝑁 0,𝜎!" ; and 𝜎!" is the estimated standard deviation. 

The ‘before’ rate is taken to be the pre-SFpark rate, which is $2, $3 or $3.50 per hour 

depending on the neighborhood. We calculate the rate adjustment using SFMTA’s rules, based 

on the ‘before’ occupancy. The rate adjustment has no impact on the ‘after’ occupancy, which is 

purely a random departure from the mean. We average the elasticities for each block and 

timeband over 10,000 simulations. 

Figures 1 to 3 compare the estimates reported by Pierce and Shoup, our replication of 

their work, and our random simulation of parking demand. With the exception of the results by 

price change, we replicate their results almost precisely using the same dataset. More 

importantly, we derive even more elastic responses from purely random simulations. Our overall 

simulated elasticity is -0.56, compared to Pierce and Shoup’s -0.40. One possible explanation for 

the difference is that the other forms of endogeneity discussed above, such as new destinations 

opening on particular blocks, may be biasing Pierce and Shoup’s results towards zero. 

In common with Pierce and Shoup, our simulation yields positive elasticities on some 

individual blocks – i.e., blocks where an increase in price is followed by an increase in demand, 

or vice versa. In our simulation, this is simply due to the random nature of occupancy changes, 

and captures the reality (emphasized by Pierce and Shoup) that many other factors affect parking 

demand. However, regression to the mean ensures that these positive elasticities are countered 
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out by an even greater number of negative elasticities, giving a mean elasticity of –0.56 (in our 

simulations) or –0.40 (in Pierce and Shoup’s results).3 

The somewhat counterintuitive patterns by price change in Figure 3 deserve particular 

attention. The response is most elastic for the adjustment of -$0.50, and virtually zero for the 

adjustment of $-0.25. This pattern can be explained as a function of the distribution of 

occupancies and the rate adjustment regime. Recall that a rate adjustment of -$0.50 is reserved 

for blocks that fall below 30% occupancy. As shown in Figure 4, relatively few blocks have an 

average (equilibrium) occupancy below 30%. Thus, most of the rate changes of $-0.50 are due to 

large random fluctuations on blocks with higher equilibrium occupancies, which subsequently 

revert to the mean and generate spurious elasticities.  

Figure 4 also shows the pattern of simulated ‘elasticities’ by equilibrium occupancy. The 

most elastic demand occurs at 70% occupancy. As discussed above, this is because any large 

departure (10% or more) will result in a rate adjustment, but occupancy will revert to the mean 

independently of the rate change. 

 

                                                
3 Pierce and Shoup do not report exact numbers, but Figure 9 of their paper and our replication of their 
results indicate that more than 35% of elasticities are positive. Our simulations result in only 19% of 
elasticities being positive. This provides further evidence that other forms of endogeneity, such an 
increase in demand from a new restaurant leading to subsequent price increases, which would be expected 
to yield positive elasticities, are biasing Pierce and Shoup’s results.  
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Figure 1 Elasticity by Time of Day 

  
Figure 2 Elasticity by Neighborhood 
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Figure 3 Elasticity by Price Change 

 

 
Figure 4 Distribution of Occupancies and Simulated Elasticities 
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Too Good to be True? 
Even before considering the simulation results, there are some signs that should raise questions 

as to the validity of the Pierce and Shoup conclusions. Most importantly, their reported average 

elasticity of -0.4 is similar to or more elastic than those reported in other contexts. A review by 

Vaca and Kuzmyak (2005) suggests a typical parking price elasticity of -0.3, with a general 

range of -0.1 to -0.6. This means that according to Pierce and Shoup, SFpark elasticities lie in the 

upper part of the range reported in the literature.  

Yet, the San Francisco program might be expected to generate relatively inelastic 

responses. Many on-street parking spaces are occupied by disabled placard holders, who do not 

pay for parking and thus would not respond directly to any price change (Shoup 2011; Manville 

& Williams 2012). Moreover, under SFpark, parking prices are not readily apparent to drivers 

who do not first park and check the meter, or research the prices online. It is unclear how many 

drivers are actually aware of the price differentials, even if they are aware of the broader SFpark 

program. Further, the presence of latent demand is likely to temper the impacts of price increases 

on blocks that are close to fully occupied, as newly available spaces are taken up by drivers who 

previously could not find a space on that block. For all these reasons, an elasticity of -0.4, 

especially in the short term, warrants close scrutiny. 

An Alternative Empirical Approach: Regression Discontinuity 
Any analysis of SFpark and similar programs clearly needs to explicitly consider the design of 

the rate adjustment process. In this section, we present an alternative method – regression 

discontinuity – that is widely used to address similar problems of endogeneity.4 Since the 30%, 

60% and 80% thresholds for rate changes are determined exogenously, blocks just below a 

threshold can be compared to blocks just above the threshold. If rate changes were having an 

impact, one would expect to see “jumps” or discontinuities in occupancy changes at this 

threshold. For example, blocks that were at 79% occupancy in the “before” period (and thus did 

not experience a rate change) should see little change in occupancy compared to blocks that were 

                                                
4 A related design that could be used is the matching design discussed by Dehejia & Wahba (2002). 
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at 80% occupancy (where rates increased by 25 cents).5 Such a regression discontinuity design 

relies on the assumption that blocks immediately above and immediately below the threshold are 

similar in all ways except for the different rate changes.  

Figure 5 provides a graphical representation of the regression discontinuity analysis. The 

x-axis indicates occupancy in the “before” period, and the vertical lines indicate the rate 

adjustment thresholds. The upper panel shows the percentage rate change between the “before” 

and “after” periods. The impact of the thresholds is clearly visible through the discontinuity in 

the solid line. The conclusions are somewhat obvious – by the design of SFpark, rate changes are 

discontinuous at each threshold – but the purpose here is simply to illustrate how regression 

discontinuity analysis can work. 

The lower panel of Figure 5 shows a similar analysis for the percentage occupancy 

change. If response to price changes were large, as Pierce and Shoup suggest, then there would 

be similar discontinuities in the solid line. The percentage occupancy change should drop sharply 

downwards at each of the three thresholds. No such discontinuities are evident in the lower 

panel, indicating that there is no discernable short-run occupancy impact of the SFpark rate 

adjustments. This is confirmed by the regression discontinuity coefficients shown in the 

appendix, which represent the impact of moving from a “before” occupancy just below a 

threshold to just above a threshold. The coefficients are neither uniformly negative nor 

statistically significant. 

The results shown in Figure 5 and the appendix are based on more than two years of 

SFpark rate adjustment data, and use data through November 2013.6 Almost identical results are 

obtained using only the first year of data, as in the Pierce and Shoup analysis. We also obtain 

similar results when disaggregating by geographic area and by individual rate adjustment. In no 

case is there evidence of any short-run impact of rate changes on driver behavior. 

                                                
5 For a discussion of the assumptions behind regression discontinuity designs and applications to the 
transportation and planning contexts, see Washington et al. (2011) and Deng & Freeman (2011). 
6 The data file is available at http://sfpark.org/resources/meter-rate-adjustment-spreadsheet-november-
2013/, last accessed December 19, 2013. 
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Figure 5 Regression Discontinuity Analysis 

These regression discontinuity results have several important limitations (all of which are 

common to the Pierce and Shoup analysis). First, we are unable to distinguish between the 

different ways in which drivers may respond to a change in price – in particular, the extent to 

which they choose to shift their parking location versus changing mode or the decision to make 

the trip. Second, the size of the elasticity will likely depend on the rate differential with 

neighboring blocks. An increase from $2 to $2.25 may have an effect if rates on neighboring 
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blocks are $1, but not if neighborhood blocks are priced at $5. Third, as we emphasize in the 

conclusion to this paper, we only examine the short-run impacts of rate adjustments, and do not 

account for longer-term responses by drivers following multiple rate changes over a one- to two-

year period. 

Conclusions  
Pierce and Shoup interpret their elasticities as demonstrating the large effects of parking price 

changes on driver behavior. However, similar results follow from random fluctuations in 

demand, which subsequently trigger changes in price according to SFpark’s rate adjustment 

rules. If similar elasticities can be produced through random behavior, then claims that parkers in 

aggregate are changing their behavior in response to price may be unfounded. Moreover, using 

an alternative method that accounts for certain limitations in Pierce and Shoup’s analysis, we 

find that the short-run elasticity is indistinguishable from zero. Pierce and Shoup conclude that 

individual price changes are influencing short-run demand, but our results call into question the 

direction of the causal relationship. Fluctuations in demand may be influencing price more than 

individual 25-cent changes in price are influencing demand. 

Our results do not necessarily mean that SFpark is failing to achieve its stated goals of 

improving parking availability and reducing cruising. In common with Pierce and Shoup, we 

analyze only the short-run impacts following individual rate changes. It is plausible that parkers 

do not react to each 25-cent change, but do adjust their behavior in the longer term as awareness 

of price differentials increases, and as the cumulative rate changes mount up.7 Other elements of 

the SFpark program, such as real-time occupancy information, improved payment options and 

adjustments to off-street parking rates, may also affect on-street parking demand.  

Indeed, in our other work (Millard-Ball et al. 2014) we find that the overall impacts of 

SFpark have grown over time; not until the second year did measurable changes to parking 

occupancy and cruising occur. Negligible impacts after individual rate adjustments should not 

come as a surprise given the time needed for drivers to understand the system. Moreover, 

                                                
7 A similar view has been expressed by the manager of SFpark (Bialick 2011). 
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potentially high levels of consumer surplus, with willingness to pay exceeding initial parking 

rates, might mean that large rate adjustments are needed before drivers respond.  

Planners should treat the elasticities reported by Pierce and Shoup with caution. They 

should not expect shifts in parking demand in response to relatively small price changes, at least 

in the short-run. If the aim is to affect curb parking occupancy in a context such as San 

Francisco, then price changes may need to be large enough to be immediately noticeable, or else 

policy makers need to commit for the longer haul.   
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Technical Appendix: 
Estimated Short-Run Impacts of Rate Changes 
 

Rate change threshold Coefficient 
Robust  

standard error  t statistic p N 
25-cent increase 1.750 1.243 1.408 0.159 5771 
25-cent decrease -2.808 2.145 -1.310 0.190 3828 
50-cent decrease 7.127 6.611 1.078 0.281 1268 
 
Notes: 
(1) Coefficients refer to the estimated impact of crossing each rate adjustment threshold. For the 25-cent 
increase, it indicates the impact of moving from a zero to a +25¢ adjustment. For the 25-cent decrease, it 
indicates the impact of moving from a -25¢ to a zero adjustment. For the 50-cent decrease, it indicates the 
impact of moving from a -50¢ to a -25¢ adjustment. One would expect all three coefficients to be negative, 
as rate changes increase (and thus occupancy changes would be expected to decrease) across each 
threshold. 
 
(2) Estimated elasticities could be calculated by dividing the coefficient (i.e. estimated occupancy change) 
by the average percentage rate change in the sample. We do not do this since the coefficients are 
indistinguishable from zero. 
 
(3) Each row represents a separate regression using the subsample where “before” occupancy is within 
10% of the threshold. The regression is of the cubic form: 

 𝑦! =∝ +𝛾𝑇! + 𝛽!𝑋! + 𝛽!𝑋!! + 𝛽!𝑋!!   + 𝜀! 
where: 𝑦! is percentage occupancy change 

𝑇! is a dummy variable indicating whether observation i has “before” occupancy greater than or 
equal to the threshold 
𝛾 is the coefficient of interest (reported in the table) 
𝑋! is occupancy in the “before” period 
∝,𝛽!,𝛽! and 𝛽! are estimated coefficients (not reported) 
𝜀! is the error term 

 
(4) Qualitatively identical results are obtained using alternative specifications, such as a polynomial of 
degree 4 or 5, or a local linear regression model. We drop observations where a rate change is not possible 
because the “before” rate is at the floor (25¢) or ceiling ($6.00), or where a rate change is not made for 
other reasons. (Inclusion of these observations does not change the results.) 
 
  
 
 


