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ABSTRACT 
This paper presents a method for determining parking search behavior using GPS traces.  The research 
takes advantage of a GPS based household travel survey, an extensive dataset of GPS with video, and a 
commercially purchased set of trip segments.  Strategies for data cleaning, matching traces to digitized 
networks, assessing the probability that a trace is of good quality, and strategies for determining 
whether or not a trip involves excess travel due to parking search are described.  We define and 
operationalize two definitions of excess search – popularly known as cruising.  Our results suggest that 
cruising in San Francisco, CA and Ann Arbor, Michigan is acute in some locations but overall 
experienced in less than 5-6% of vehicle trips, and that it accounts for less than 1% of vehicle travel in 
these cities–considerably less than in previous estimates. 

 
HIGHLIGHTS 

• We develop a method to use GPS traces to quantify cruising for parking 

• The approach allows development and robust testing of targeted policy interventions 

• We operationalize cruising in two ways: excess travel and blocks traversed repeatedly 

• Cruising in San Francisco and Ann Arbor is experienced in < 5–6% of vehicle trips 

• Cruising accounts for less than 1% of vehicle travel in these cities 

• Cruising is but one of many reasons for excess travel in the final portion of a trip 

 
KEY WORDS: Cruising, Parking, GPS, Big Data  
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INTRODUCTION 
Searching for parking, colloquially known as cruising, has been a concern almost since the 

beginning of automobile mass production; two of the first known studies of cruising date to 1927 
(Shoup 2006). Problems associated with cruising include an excess of vehicle miles traveled, i.e. after 
arriving at their destinations, drivers continue to drive in search of a parking space. This excess travel 
implies additional congestion, air pollution, time wasted, and driver frustration which could translate 
to increased risk of accidents and loss of economic competitiveness at destinations where parking is 
hard to find, especially if alternative access options are also scarce. 

The extent of cruising remains unclear. Several attempts have been made to quantify cruising 
and how much it contributes to vehicle travel, congestion and air pollution. Such research, 
understandably, has been conducted in the locations where cruising is known to be an issue. 
Unfortunately, results are then extrapolated across wide regions. For example, it is often taken on faith 
that “…30% of urban traffic comes from cars hunting for parking spaces” (Zimmerman, 2011). This has 
been traced to an analysis by Donald Shoup (2006) that averages the results of a limited number of 
studies and concludes that 30% of vehicles in congested downtowns are searching for parking. The 
misinterpretation stems from taking the straight average of these disparate studies without regard to 
community size, date of the analysis, whether it was conducted in a downtown or neighborhood, or any 
other conditions that might affect the outcome.  There have been attempts to debunk the number 
(Polzin, 2016; Barter, 2013), but the figure of 30% is still widely used in academic and policy settings.  

Over time, concerns about cruising have heightened in spite of many efforts to “solve” the 
problem; and the extent of cruising remains unclear. Much policy discourse centers around the 30% 
rule-of-thumb, but more recent studies suggest that this is a large overestimate. For example, a recent 
simulation study of San Francisco found that the average motorist cruised just 50 feet in search of 
metered parking (Millard-Ball, Weinberger, and Hampshire, 2014).  Other methods, such as intercept 
surveys, video detection and shadowing vehicles by bicycle, have been developed but as discussed in 
the following section, all have limitations. In the current state, cruising is neither well quantified nor is 
cruising behavior well understood.   Without a clear understanding of the problem, solutions will likely 
remain elusive.  

Moreover, many of the existing research methods, such as shadowing vehicles by bicycle, 
quantify the percentage of traffic that is searching for parking, rather than the excess traffic and 
pollution from cruising. The difference is subtle but important for policy. Almost all trips, with the 
main exceptions of drop-offs and those ending in reserved parking, end in a “search” for parking.  A 
driver may accept an available parking space even if she has not yet begun to circle and incurred excess 
travel (Millard-Ball, Hampshire and Weinberger 2020). Furthermore, such circling may never occur 
during a parking search. When close to a destination, up to 100% of traffic is searching for parking, 
and so a study that finds that a high percentage of traffic is searching for parking may reflect the 
absence of through traffic as much as the scarcity of available parking. 

In this paper, we provide a new method for quantifying cruising for parking, employing the 
emerging technologies that have been developed to capture and process Global Positioning System 
(GPS) traces from smartphones and in-car navigation devices. We work with GPS traces with the goal 
of using such traces to develop nuanced understandings of cruising for parking.  Though we present 
quantified results in two locations (Ann Arbor, Michigan and San Francisco, California), the primary 
purpose of the research is to develop a method by which the new abundance of GPS data can be 
harnessed to provide policy-relevant insights on cruising, and avoid the biases in previous, manual 
methods such as surveys and shadowing of vehicles.  We offer a precise definition of cruising based on 
the difference between the length of the driver’s actual route and the shortest path, once he or she first 
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reaches a 400m radius of the destination. The excess travel definition of cruising is a more restrictive 
definition than typically implied in the literature, but it more closely matches the negative externalities 
implied in the term “cruising for parking.” In this paper, we use the terms “cruising” and “excess 
travel” interchangeably.  

Our method measures the overall amount of cruising, and illustrates spatial and temporal 
patterns.  It can be adapted to use different streams of GPS data, which are becoming increasingly 
available through new technologies such as GPS-enabled travel surveys (Bricka et al. 2012), 
smartphones and navigation devices. The work builds on an increasingly rich body of research and 
provides a promising path forward for the creation of robust tools that any city can employ at any level 
of geography to better understand parking search behavior and, in turn, create better policy responses 
than have been available to date. 

 
PREVIOUS RESEARCH 
Introduction 

Parking search behavior has been a subject of interest to researchers since the private 
automobile became a popular mode of travel in the early 20th century (Weinstein, 2002; Shoup, 
2006). Despite the decades of study, there is little agreement on either a precise definition or the 
extent to which parking search affects travel, traffic, and people’s experience of urban places. A review 
of 16 studies between 1927 and 2001 showed a range of 3.5 to 14 minutes of added trip time due to 
searching for parking, increasing overall traffic levels in the areas studied by 8% to 74% (Shoup 2006). 
A range of other studies has estimated that cruising can represent as much as 30% to 50% of traffic on 
a given downtown street (Shoup, 2006; Arnott and Rowse, 1999; Schaller, 2006; Transportation 
Alternatives, 2008).  A review of multiple surveys from Europe has estimated that parking search 
comprises 25 to 40% of overall auto travel time and vehicle miles traveled in central urban areas 
(Bonsall and Palmer, 2004).  Though these findings are abstracted broadly, a caveat is that they were 
conducted in places where parking search was previously believed to be a problem, and such 
abstraction is, therefore, misleading (Barter, 2013).     

Excess parking search has received a great deal of attention because of the range of costs 
associated with it. For drivers, costs include extra time and fuel spent searching for an open space 
(Shoup, 2006). In their review of cruising studies, Polak and Axhausen (1990) surmised that the time 
spent cruising is valued more than general travel time, but still, under certain circumstances, can 
account for a considerable share of total travel time. They also observed that the routes of those 
cruising for parking are generally longer and less efficient than those of other traffic, contributing 
significantly to traffic congestion in urban areas (Polak and Axhausen, 1990).  

In addition to added traffic congestion and vehicle kilometers related to excess parking search, 
the behavior burdens communities and their residents with the harmful effects related to additional 
traffic, such as air and noise pollution and increased collision risk (Box, 2004; Humphreys, Box, 
Sullivan, and Wheeler, 1978). As a result, new technologies have emerged to reduce cruising through 
adaptive pricing based on data from in-street sensors (Millard-Ball, Weinberger, and Hampshire, 
2014), parking guidance systems (Shin and Jun 2014) and parking reservation systems (Liu, Yang, and 
Yin, 2014). However, fewer emerging technologies have been devoted to understanding the cruising 
process itself. 
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Defining and Understanding Excess Parking Search (Cruising) 
There is no concise operational definition of cruising.  Where descriptions are given, cruising 

tends to be defined informally or simplistically. Shoup describes the activity as waiting in “a queue of 
unknown length, where the next person called to the window is determined by lottery” (Shoup 2006).  

Perhaps, the difficulty of defining cruising is related to the ambiguous nature of the origination 
or initiation of the search itself. Almost any trip that does not end with a drop-off, valet, or in a known 
or reserved parking space—for example a home driveway—involves a parking search. This is true even 
when the trip ends in a parking garage or lot.  Horni, et al. encapsulate the difficulty in establishing the 
starting point of a search by remarking that it cannot be “sharply specified, let alone easily 
operationalized” (Horni, Montini, Waraich and Axhausen, 2013). They further note that the start of 
cruising is likely “dependent on the linear distance to the destination” (Horni, et al. 2013), but also 
note that it could be initiated earlier than planned based on the individual drivers’ on-route 
observations (Horni, et al. 2013). Similarly, Brooke, Ison, and Quddus (2014), indicate that cruising 
“occurs when a motorist reaches his or her destination, intends to park, and circulates in the vicinity of 
their destination’’ (Brooke et al. 2014). Kaplan and Bekhor also use “arrival within a certain distance of 
the destination” as a defining characteristic of the start of a search, but acknowledge that identifying 
that point will be the primary challenge of future studies (Kaplan and Bekhor, 2011). Hampshire et al. 
(2016) use video evidence to identify the start of the parking search through driver eye, head and 
upper body movements, finding that the search begins at a median (radial) distance of 100m from the 
final parking location. 

On the other hand, Thompson and Richardson contend that the process is actually initiated 
when the trip begins, when drivers decide on a general parking strategy based on prior knowledge of 
the area around the destination, and give no further consideration to search initiation based on the 
differences in the characteristics of the search process (Thompson and Richardson, 1998). Meanwhile, 
van der Waerden, et al. in an attempt to identify search initiation using GPS data, pin parking search 
to travel speeds, defining the start of the search process as when average speeds dip below 23 
kilometers per hour and differences in speed between measured time periods is less than 5 kilometers 
per hour (van der Waerden, Timmermans and Hove, 2015). Overall, the decision-making process 
involved in each element of the search is highly dependent on a complex interaction between 
individual drivers’ parking preferences, their feelings on the relative utility of different types of spaces 
weighed against the time and/or financial costs of those spaces, and a variety of other variables, 
including the characteristics of the individual, the characteristics of the trip, and the characteristics of 
any given parking location (Millard-Ball et al., 2014; Shoup, 2006; Polax and Axhausen 1990; Kaplan 
and Bekhor, 2011)  

Data Collection 
Numerous data collection methods have been developed to measure cruising behavior. 

Simulation modeling is one approach (Leurent and Boujnah 2014; Du et al. 2019). However, we focus 
here on empirical studies, which tend to rely upon surveys, video recording (or other visual 
techniques), manual data-collection methods like driving or using bicycles to emulate driving (Shoup, 
2006; Schaller, 2006; Hampshire et al., 2016; van Ommeren, Wentink and Rietveld, 2012; Lee, Agdas 
and Baker 2017), or some combination thereof. Brooke, et al. (2015) relied on data from a revealed-
preference on-street parking survey in their assessment of cruising influence factors in the East 
Midlands, UK. Data from the Dutch National Survey were likewise used to gauge the levels of search 
behaviors in the Netherlands (van Ommeren et al., 2012).  Bicycles have been used to collect data in 
Westwood, California (Shoup, 2005) and San Francisco (Alemi, Rodier, and Drake, 2018; Joy and 
Schreffler 2015).  Guo, et al. (2011) employed a visual technique, described as a license plate method, 
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to record travel times at the entrance and the exit of a test section at select time intervals in their 
assessment of the travel time influence of on-street parking. 

Tertiary parking data has also been used to measure and estimate cruising. Millard-Ball, et al., 
used occupancy data from in-street sensors to investigate the relationship between occupancy and the 
probability of finding a parking space. For this study, a three-stage empirical analysis approach was 
used to estimate parking availability and arrival rates, and simulate cruising (Millard-Ball et al., 2014). 

Each of these methods of data collection described is subject to different biases. Surveys rely 
upon a driver’s estimation of search time which can vary considerably and is often exaggerated (van 
Ommeren et al., 2012). It is unclear whether drivers are able to objectively or accurately recall their 
cruising experience and it is difficult to devise a sampling strategy that is at once cost effective and 
representative. Visual techniques provide potentially robust data but are extremely limited in 
geographic scope and subject to selection bias, given that resources are usually deployed only in areas 
that are known to be problematic. In fact, Guo et al., meticulously selected their test sections under 
specific criteria, which included very low bicycle volumes to prevent vehicles from being influenced by 
bicycles, thereby selectively influencing their own data (Guo et al., 2011).  

To address shortcomings of these methods, researchers have begun, in limited ways, to use 
GPS to collect and track cruising data in real time. GPS data are already widely employed for travel 
demand analysis, often as a part of household travel surveys (Bricka et al. 2012; Gadziński 2018). In 
the context of cruising for parking, however, use of emerging GPS technologies is just beginning to 
gain traction. Horni, et al. (2013), developed an agent-based cellular automaton cruising simulation 
that combines microsimulation and parking choice models in one framework. This simulation process 
is anticipated by Horni et al. (2013) to provide a useful testing ground for estimation using GPS data. 
Meanwhile, Kaplan and Bekhor (2011) developed a multi-method data collection approach of self-
reported surveys coupled with GPS field experiments as a part of a methodological framework to 
measure and reveal the determinants of cruising. According to them, the start of the search could 
potentially be identified using this method by syncing the user’s recollection of the initiation of the 
search with notable speed and direction changes in the GPS data. van der Waerden, et al. (2015) later 
selected a city based on the Kaplan and Bekhor methodology and recruited volunteers to use GPS 
loggers to record their trips and combined this data with participant surveys or travel diaries. 
However, the sampling for this study was not representative, as only 15 participants recorded the 97 
trips analyzed, and these participants were not evenly distributed.  

 
DATA AND METHODOLOGY 
Data Sources 

For this study, we relied on three GPS datasets to develop, test, and refine a cruising 
identification strategy.  To understand the human element of the parking search and how that might 
be relayed as a cruising signature we used a substantial set of GPS traces with accompanying video 
collected in Ann Arbor by the University of Michigan Transportation Research Institute (UMTRI). 
These traces are discussed in more detail in Hampshire et al. (2016). In addition, much of the analysis 
is based on a large set of anonymized segments of journeys taken in San Francisco.  These data were 
purchased from a data broker, and to maintain anonymity we refer to the data here as “commercial.”  
The third, a small set of trips ending in San Francisco, are part of the California Household Travel 
Survey (CHTS), which included a travel diary with supplemental GPS traces. These data were accessed 
through the Transportation Secure Data Center.1 Additional data included a host of geographic 
information system (GIS) layers including street networks, curblines, parking lots and garages.  

 
1 The Transportation Secure Data Center is hosted by the National Renewable Energy Laboratory, and provides 
access to the raw GPS traces. See www.nrel.gov/tsdc 
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Data Caveats 
Each dataset was used in a unique way during the course of the study and each comes with 

certain cautions and caveats. One concern that is common to the UMTRI, Commercial, and CHTS 
datasets is that the GPS trace tells only where the trace ends but not the actual destination. Hence, we 
have no way to understand how far the driver parks from their destination. Some drivers will park 
short of their destination (reducing excess travel) and some will continue beyond it (Millard-Ball, 
Hampshire, and Weinberger, 2020); we assume that these effects cancel each other out. 

An advantage of the UMTRI and CHTS data is that there are repeat trips by a limited set of 
individuals. This allows us to see patterns wherein a trip out of context would seem to be cruising but 
ultimately represents a preferred path or an error in the GIS layer.  While we cannot identify a 
participant, we can group trips as being made by the same vehicle. Additionally, the CHTS data is a 
representative sample of Californians.  

The Commercial dataset can be considered the workhorse of the effort; it provides by far the 
largest sample, but has some important limitations. The most critical is a possible bias toward 
unfamiliar trips. The data are collected from on-board and hand-held navigation systems and it is 
impossible to discern which records derive from each source. On-board systems transmit continually 
providing a data feed for all trips. Historically, hand-held devices transmit only when the user has 
asked for navigational assistance. Thus, the data are potentially biased toward unfamiliar trips, those 
wherein the user would request directions. We expect that by viewing these trips we would learn 
something about the ease or difficulty of parking on a particular block but inferences about cruising 
generally could overstate the problem. We base the assumption on the idea that someone familiar with 
an area would have a strategic sense of where to look for parking while someone unfamiliar would take 
a more haphazard approach. More broadly, because the data are anonymous, we do not know how 
representative they are of trip-making in general. Thus, the Commercial data are most useful for 
identifying broad geographic and temporal patterns of cruising, and for testing our algorithms on a 
large dataset. 

The geographic coordinates from a GPS trace are subject to some inaccuracies. Errant pings, 
likely caused by the signal bouncing off a building and defined where the speed from the previous 
point was more than 130 km/h, were removed from each trace.  Also, as noted below, low ping density 
--a long time elapsed between pings-- can create uncertainty with respect to the actual path. The map-
matching process discussed in the following section helps to mitigate these problems, but we still 
discard many traces due to low ping density and/or inaccuracies. 

 

Matching Trips to the Network  
To calculate the actual path length, we map-matched the traces to the street network, ignoring 

the final part of the trip if it took place within a parking lot or garage, appeared to involve a walk 
segment, or consisted of noise after entering a building. Map-matching is important because the length 
of the GPS trace does not equal the length of the actual route, and thus will not be directly comparable 
to our network-based calculation of the shortest paths. For low-resolution traces, the raw trace will 
“cut corners,” taking a straight line between each GPS ping. For high-resolution traces, there will also 
be jitter caused by imprecision in the GPS coordinates.    

 We found that off-the shelf map-matching software does not handle circling or poor-quality 
traces well – these software packages are sometimes programmed to assume that the driver takes the 
shortest path, and thus any observed circling is treated as an error in the data. We therefore developed 
a custom algorithm, pgMapMatch, to map-match the trace to the street network. This algorithm is 
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flexible enough to deal with circling, U-turns and other behavior characteristic of cruising. It allows 
low-resolution GPS data (e.g. those with pings only every 30 seconds) to be used in the analysis, 
through interpolating the streets that were most likely to be followed by the driver. We restrict our 
sample to traces that have a match score of > 0.9 (i.e., the probability that the map-matching was 
successful is greater than 90%.) The map-matching algorithm itself is documented in a separate paper 
(Millard-Ball, Weinberger and Hampshire, 2019), and open-source code is available at 
https://github.com/amillb/pgMapMatch. 

 

SEARCHING FOR PARKING 
Typically, a driver will begin searching at or near their destination and find a parking spot on 

the same block.  We are interested in trips that involve “excess” search that would include circling or a 
measurable deviation from a shortest path.  We began with two definitions of excess search or 
cruising: 

• Actual path is greater than the shortest route of the final segment of a trip  

• At least one block is traversed more than once (a subset of the trips identified by the first definition) 

The comparison between actual path and shortest path is measured from the last GPS ping 
identified before a vehicle enters the area circumscribed by a 400 meter radius of the trip’s final 
coordinate location.  This is illustrated in Figure 1 where the red star represents the last location 
transmission from this trip.  The pink line shows the vehicle’s trajectory – derived by matching the 
GPS trace to the network.  The dashed circle circumscribes the 400 meter “search” radius around the 
trip end.  We measure the distance the vehicle has traveled from when it first enters the “search” 
radius until it stops (we assume in a parking place). In addition, we calculate the shortest legal network 
path from that first point of entry to the final location (shown in blue) using the Turn Restricted 
Shortest Path algorithm in the pgRouting software2.  In this example, it is obvious that the driver 
traveled some distance beyond the shortest path, even exiting the search radius before reentering and 
settling on a parking space.  

 

 
2 See pgrouting.org. We use version 2.4.1. The algorithm approximates the shortest travel 
time based on the road classification. 
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Figure 1  Definition of Cruising 

 
 

To test against a real-world example, we applied the process to the CHTS, and also manually 
inspected a sample of 100 trips from the “commercial” data. While we do not know the driver’s intent, 
we can infer whether a trip was cruising from the path taken and, in the case of CHTS and UMTRI, 
from repeat trips taken over the course of the week. 

This validation step was critical in that it revealed that the operational definition did not 
perfectly match to driver behavior. Most importantly, cruising is just one reason why the actual route 
may not correspond to the shortest path, meaning that we generated a number of false positives.  That 
is, we identified a trip as “cruising” in several non-cruising situations: (i) when the underlying road 
veers from a grid –perhaps to traverse a geographic feature like a hill or a park; (ii) when the driver is 
running an out-and-back errand, such as dropping off a child at school, which could appear as a 
circuitous trip and therefore is misidentified as cruising; (iii) when the driver makes a mistake, such as 
missing a turn or a freeway exit; (iv) when a driver takes a preferred path seeking to avoid a long light 
cycle, a difficult intersection or wishes to end the trip on a particular side of the street; and (v) there is 
an error in the underlying road-network or GPS data, or temporary street closures or construction 
work. Figure 2 shows several of these situations. 
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Figure 2 Non-Cruising Examples of Trips Exceeding the Shortest Path  

 Figure 2a Following the Street in Lieu of “Shortest” Path 

 
Figure 2b  Probable Errand Appearing as Parking Search 
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Figure 2c Preferred Path; Reason Unknown 

 
Figure 2d Restricted Turn into a High School parking lot not Coded and Driveway Mis-Coded as 
Public Road  

  
 

 

We reduce the number of these false positives by adding two additional restrictions to our 
operational definition. First, the difference between actual path and shortest path must exceed 200 
meters. This helps to avoid classifying trips such as the ones in Figure 2a as cruising, by allowing for 
drivers to take a slightly longer but perhaps simpler route to their destination.  

Second, to eliminate some errand trips with an intermediate destination, such as that 
suggested in Figure 2b, we require a minimum threshold of excess travel to occur within the 400 meter 
area that we have defined as the search radius or parking catchment.  In many cases, the driver exits 
the 400m area while searching for a parking space (indeed, this is the case in Figure 1). However, if 
more than 50% of the travel takes place outside the 400m area, we assume that the driver has passed 
the ultimate destination on the way to an intermediate errand.  Given the driving pattern, time of day, 
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and the location of the trip illustrated in Figure 2b, it is likely the driver was dropping a passenger at a 
separate location and then returned to park in a place that s/he had only passed by coincidence in the 
earlier part of the trip.  

The 50% threshold improves the accuracy with which we classify trips as cruising or not.  It is 
worth noting that the threshold level influences the tradeoff between false positives and false 
negatives. Based on empirical testing of 200 traces, we chose the threshold of 50%, which yields the 
least error in terms of both identifying a cruising trip as not cruising and identifying a trip that is not 
cruising as cruising. While in many cases it was not possible to discern the driver’s intent, there were 
many instances where a trip appeared to be a clear-cut case of cruising, as in the example in Figure 1, 
or “not cruising,” as in the illustration in Figure 2b. 

The 50% threshold is somewhat arbitrary, as it is based on qualitative inspection of a relatively 
small sample. However, using a lower threshold does not significantly change the results. Eliminating 
the threshold entirely increases the percentage of trips classified as cruising in the Commercial dataset 
to 5.3%, from 4.9% under the 50% threshold. Increasing the threshold to 60% reduces the percentage 
of cruising trips to 4.5%.  

The additional restrictions to the algorithm do not control for cases where restricted turns are 
not coded or where driveways are miscoded as in Figure 2d. Additionally, cases of taking a longer 
preferred path, as in Figure 2c, remain as possible false positives. In the Ann Arbor sample some 
residential areas have alternate side parking restrictions that provide an incentive to drive around the 
block, rather than execute a U-turn, to obtain a parking space.   These types of false positives bias our 
cruising estimates upwards. 

We visually inspected a random sample of 100 traces identified as cruising from the 
Commercial dataset, and all but three unambiguously met our definition of cruising. (One trace was 
misclassified as cruising due to noise in the GPS signal, and a further two were ambiguous.) Of the 
remaining 97, the vast majority appear consistent with a driver searching for parking, but underscores 
the estimate as an upper-bound on cruising.  It appears that at least 5-10% of trips identified as 
“cruising” represent drivers taking a wrong turn, getting lost, taking a longer but reasonable path as 
shown in Figure 2a, or taking a preferred path as in Figure 2c. For example, in one trip in San 
Francisco, a driver passes a motel, circles round the block and then pulls into the motel parking lot; 
presumably, this driver is a visitor who missed the turn on the first pass. These are the most obvious 
examples; in most cases, we cannot infer driver intent from the GPS traces alone, and so in practice 
more than 5-10% of our “cruising” trips are likely to represent similar behavior. 
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EXTENT OF CRUISING 
Though the purpose of this project is to test whether the proposed approach is adequate to 

provide insights to municipalities regarding the extent of cruising within their borders, it seems 
appropriate to reveal something of the “cruising findings.”  In Figure 3 we list the number of records 
we began with in each dataset, the remaining set after we determined whether the trace was useable, 
and our estimates of cruising.   

In both Ann Arbor and San Francisco, cruising appears to affect 5-6% of the automobile trips 
that end in each city, and a smaller fraction of ~2% as judged by the more restrictive criterion of a 
block traversed more than once. Among cruising drivers, the mean excess distance cruised per vehicle 
trip is 547m (Ann Arbor) and 660m (San Francisco). Their mean time spent cruising is two to three 
minutes, based on each vehicle’s speed after entering the 400m analysis area (an average of 11mph in 
San Francisco and 14mph in Ann Arbor). 

From a policy perspective, it is more helpful to express cruising as a percentage of total vehicle 
traffic, which can be calculated from the percentage of household vehicle trips that involve cruising, 
mean cruising distances, the number of household vehicle trip ends, and daily vehicle travel within the 
city limits. In both cities, cruising accounts for less than 1% of vehicle travel by private car3.  

Analysis of the CHTS dataset shows a higher percentage of trips identified as cruising by our 
definition (9%), although the sample is small and thus the confidence intervals are wide. Moreover, a 
closer inspection of individual trips suggests that six of the 22 “cruising” trips are unlikely to represent 
actual cruising. In four of these cases, the driver takes the long way around to end up on the preferred 
side of the block, while in two cases the chosen route is longer but makes intuitive sense, for example 
to stay on major streets. In a further five trips, the intent is difficult to discern; one appears to involve a 
wrong turn, and another a valet parking operation. These inspections suggest that the actual share of 
trips that involve cruising is closer to 6%; our method provides an upper bound given the multitude of 
reasons why drivers take circuitous paths. 

 

 
3 In San Francisco, the estimate is based on regional travel model data, which show an average daily 
1.040 million household vehicle trips ending in the city, and an average daily household VKT of 9.3 
million within city limits (excluding freeways).  Note that we are unable to reliably estimate total VMT 
from the Commercial GPS sample, hence our use of the travel model outputs. First, because our 
sample of GPS traces is restricted to those that end in San Francisco, we cannot account for through 
traffic. Second, there are biases from GPS inaccuracies; we would need to discard trips where the 
cruising portion is usable, but where there is too much noise in an earlier portion of the trace. Note 
that there is little methodological consistency in earlier studies about the definition of “traffic,” i.e. the 
denominator. For example, Shoup (2006) aggregates various studies that use different definitions, to 
come up with the oft-cited baseline that an average of 30% of traffic in the downtowns studied was 
cruising. 
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Figure 3  Extent of Cruising 

  

UMTRI 
(Ann 

Arbor) 

CHTS 
(San 

Francisco) 

Commercial 
(San 

Francisco) 
1

1 
Relevant GPS traces 13,503 293 556,908 

2
2 

Usable GPS traces*   9,830 251 97,445 

3
3a 

Cruising (definition 1: actual trip is at least 200 
meters longer than shortest legal path and 50% 
of excess occurs within the search area) 

570 22 4,747 

6
3b 

Cruising (definition 2: block traversed more 
than once in the search area) 

181 13 2,110 

4
4a 

Percent Cruising Definition 1 (row 3a/row 4) 
(95% confidence interval)** 

5.8% 
±1.7% 

8.8% 
±3.8% 

4.9% 
±0.1% 

4
4b 

Percent Cruising Definition 2 (row 3b/row 4 
(95% confidence interval)** 

1.8% 
±0.4% 

5.2% 
±3.4% 

2.2% 
±0.1% 

7
5 

Excess distance for cruising trips: 
Mean 
(95% confidence interval) 
Median 

 
547m 
±47m 
499m 

 
599m 
±192m 
486m 

 
660m 
±14m 
506m 

1
6 

Excess time for cruising trips 126 secs 117 secs 168 secs 

1
7 

Percentage of private car traffic that is cruising 
(row 4a * row 5 mean * number of trip 
ends/total vehicle travel) 
(95% confidence interval)** 

0.3% 
±0.1% 

0.6% 
±0.5% 

 

0.4% 
±0.0% 

* We exclude trips where the mean temporal resolution is > 30 seconds, or the maximum gap with pings > 60 seconds, or where there are < 3 pings within 
the 400m search radius. We also exclude traces that end on a freeway segment, and where the map-matching does not give reliable results (where the 
probability of a successful match is <= 0.9). 
** Percentages and number of trips are based on trip ends, i.e. the number of private cars that cruise and park divided by the number that park. In Row 7, 
the number of trip ends is equal to the number of average daily household vehicle trips that end in each city, divided by average daily household vehicle 
travel within the city limits (excluding freeways). In Ann Arbor, we do not have the trip-end level data and so we use an approximation based on row 4a * row 
5 mean / average trip length. 
Confidence intervals for the UMTRI and CHTS take into account the clustering in the sample design, where GPS-equipped households make multiple trips, 
and are thus wider than those produced when assuming a simple random sample. The clustering formula used is from Dransfield and Brightwell (2018), 
using one stage clustering with unequal weights. The confidence intervals do not account for non-sampling error, which is likely to be particularly high in the 
Commercial dataset.  
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 The amount of cruising for the mean driver may be almost trivial. Even among trips that 
involve cruising for parking, the median distance cruised is around half a kilometer in all three 
datasets – less than the distance to drive to the top floor of many parking structures. However, the 
average results disguise much larger amount of excess travel and repeated blocks for a small number 
of drivers. Figure 4 shows the distributions of excess travel and repeated blocks for the Commercial 
dataset (San Francisco) and UMTRI dataset (Ann Arbor). The long right tail, which is truncated in the 
plots, indicates that a small minority of drivers travel more than 1500m in search of parking, and 
revisit the same block more than 15 times. The experiences of this small minority of trips may partially 
explain why perceptions of cruising are much worse than our results for the average driver suggest. 

 Figure 5 shows the temporal patterns of cruising for weekdays in San Francisco and Ann 
Arbor, and also for a subset of trips that end in San Francisco’s Mission District (a special case, defined 
as zipcode 94110). The Mission District is a high-density, mixed-use neighborhood close to the 
downtown core, where parking for both residents and visitors is often perceived to be challenging. 
While there is considerable noise in the time trends, the experience of the two cities is markedly 
different. In Ann Arbor, cruising is most prevalent in the afternoon. In San Francisco – and 
particularly in the Mission District – there are several peaks throughout the day, including one after 
6PM when meters are switched off. In Ann Arbor there is an apparent double peak of cruising 
occurring between 4:00pm and 6:00pm. This may reflect the dominance of private automobile 
commuting (relative to San Francisco) and is, therefore, likely due first to the switch over from 
daytime employees parking on-street to evening employees parking on-street and the related search 
for parking by evening employees. The second spike is likely due to evening dining and entertainment 
customers searching for on-street parking. 

 For a subset of the Commercial sample, we can evaluate the relationship between cruising and 
metered parking occupancy directly using data from in-street sensors that were installed on select 
blocks as part of the SFpark program (SFMTA 2014; Millard-Ball, Weinberger & Hampshire 2014). In 
2,202 trips, the last segment traverses a block for which contemporaneous parking occupancy data is 
available. Occupancy at meters averages 55% for non-cruising trips (N=2127) and 59% for the cruising 
trips (N=75). While the subsample size is small, the implication is that cruising drivers are often 
bypassing available spaces on metered blocks in search of permit-only or other unpriced spaces. 
Alternatively, it could mean that drivers are passing by open parking spaces well short of their 
destination (just within the 400m radius) in the hopes of finding a space closer by. 
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Figure 4 Distributions of Excess Travel and Repeated Blocks (cruising trips only) 

 
Note: Left plot is truncated at 2,000m 

Figure 5 Temporal Patterns of Cruising  
(60-minute rolling mean, weekdays only) 

 
Note: fractions refer to trip that end at a given time and/or in a given city or neighborhood.  
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SENSITIVITY ANALYSIS 
Our quantification of the extent of cruising depends on several parameters: 

• The radius (400m) within which the shortest path is compared to the actual distance 

• The threshold (200m) above which any excess distance is considered cruising 

• The proportion of travel (50%) which must occur within the 400m radius 

• The cutoff (0.9) to exclude trips where the map-matching gives uncertain results 

These parameters are chosen based on previous travel behavior research, expert judgment, 
and qualitative inspection of traces. For example, the 400m radius corresponds to about a five-minute 
walk—a distance frequently used in the transit ridership literature as a reasonable walk. Moreover, our 
previous results based on parking video analysis find that almost all (95%) of drivers begin looking for 
parking only after entering the 400m radius; the median distance between the start of the parking 
search and the parking location was 100m (Hampshire et. al, 2016). The 200m threshold (just over a 
typical city block), meanwhile, was chosen to exclude trips where a slightly longer route might be taken 
due to irregularities in the street grid, double parking, or the timing of traffic signals. In this section, 
we explore the extent to which our results are sensitive to these parameter choices.   

The search radius is computationally intensive to vary, and so we conduct a reanalysis of the 
Commercial traces with two different values: 300m and 800m (Figure 6). The smaller the radius, the 
fewer trips are considered cruising, because there is less opportunity for the shortest-path distance to 
diverge from the actual distance. However, the difference between our 400m central case and a radius 
twice as large (800m) is just 0.3% of trips, suggesting that few drivers begin to cruise or to park more 
than 400m from their destination. The mean cruising distance is very similar across all three cases. 

For the other parameters, we explore a larger range of potential values ( 

Figure 7). The round markers indicate the central case (50% of travel within the radius, 200m 
threshold, and 0.9 match score). Relaxing the requirement for 50% of the travel to be within the 
analysis radius (left panel) means that very few additional trips are classified as cruising, but that the 
excess distance from those trips tend to be very long – consistent with the running of errands and 
chauffeur trips. Conversely, a more stringent requirement would classify very few trips as cruising, 
suggesting that most cruising trips do encompass a wider area, and exit and reenter the 400m radius.  

Adjusting the threshold distance (center panel) has a more substantial impact on the fraction 
of cruising trips, and a more limited impact on the total amount of cruising. Intuitively, many drivers 
do not take the shortest path to their destination, but it is unlikely that a detour of (say) 50m is 
indicative of parking search. 

Allowing for poorer-quality map matching (right panel) also increases the fraction of cruising 
trips. However, visual inspection suggests that most of these trips are not cruising; rather, the 
difference between actual distance and shortest-path distance is an artifact of inaccuracies in the GPS 
data (for example, with signals deflected by tall buildings). Conversely, requiring near-certainty in the 
map matching restricts the sample to very simple traces, such as driving in a straight line, which rarely 
involve cruising. 

Overall, the sensitivity analysis suggests that our qualitative conclusions are robust to a wide 
range of reasonable parameter choices. In practice, the other constraints of our data (such as the non-
representative sample in our Commercial dataset) are likely to have a more substantial impact. 
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Figure 6  Sensitivity to search radius 

 300m 400m 800m 
Percentage of trips cruising 4.2% 4.9% 5.2% 
Mean excess distance (all trips) 27m 32m 34m 
Mean excess distance (cruising 
trips) 

651m 660m 649m 

 
Figure 7  Sensitivity to other parameters 

 
 

THE GEOGRAPHY OF CRUISING 
  To analyze the geographic distribution of cruising trips we used an Inverse Distance 

Weighted interpolation to create a smoothed surface of estimated cruising in Ann Arbor and San 
Francisco. This approach allowed us to map GPS trace attribute values and to exclude areas of the city 
that have concentrations of trips too low to yield meaningful results.  Here we present two views of 
cruising. Figure 8a shows the probability that trips are considered cruising using a definition of 
cruising as being 200 meters or more longer than the shortest path.  The following image, Figure 8b, 
depicts a more classical definition of cruising in which drivers actually “circle” something we measure 
as blocks that are traversed multiple times. This is the second, more restrictive, definition of cruising 
that we presented above.  

In analyzing the geography of cruising, we present results aggregated to trip ends, rather than 
the streets on which the cruising occurs. The previous literature uses a mix of the two approaches. For 
example, those that rely on intercept surveys (e.g. Lee, Agdas & Baker 2017)  and “park-and-visit tests” 
normally aggregate to trip ends, while studies that observe how many drivers pass a vacant parking 
space (e.g. Shoup 2005) focus on the streets where cruising occurs.  

Our choice of trip ends is partly for computational reasons, but also because such a measure is 
most closely related to the policy implications. For example, suppose that parking is scarce on a busy 
street. Suppose that 99% of the trips on this street are through traffic and do not want to park, and that 
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all of the 1% of trips with a trip end on this street must cruise. It is most useful to think of cruising as 
“100% of trips” (which indicates the scarcity of parking), rather than 1% (which implies there is no 
problem). A measure that focuses on the portions of the trips or trajectories says more about the share 
of through traffic than about parking. At the city level, of course, there is almost no difference between 
the two approaches; the distinction is only relevant for small geographic areas. 

Several conclusions are apparent from the maps. In San Francisco, there is little cruising in 
downtown and high-density adjacent neighborhoods. This may be because parking at meters is readily 
available in these neighborhoods (as found in Millard-Ball et al. 2014), and/or because most drivers to 
these areas park off street in lots, garages, or private residential spaces. While some lengthy cruising 
trips may occur, they are not experienced by most drivers. Second, the cruising “hot spots” vary 
considerably in character. Some hot spots are found in the west of the city center around public 
parking lots, which are unpriced and may be frequently fully occupied. In others, the hotspot appears 
to be an artifact of the street network, where the intersection of different grids at awkward angles 
means that drivers often take indirect routes. Others still represent medium-density residential 
neighborhoods with little off-street parking.  

Like San Francisco, cruising in Ann Arbor (shown in Figures 8c and 8d) occurs in disparate 
settings.  The prime cruising hotspots occur near the University of Michigan, which is located close to 
downtown, and in residential areas.  In the south university area, over 30% of trips include some 
element of cruising.  This is a relatively dense area providing access to university buildings, as well as 
other amenities like coffee shops, restaurants, and bars.   

In general, we found much more “cruising” in residential areas than we anticipated, but while 
these trips involve excess travel and thus match our cruising definition, they may not represent a 
search for parking.  Drivers frequently circle the block to obtain a parking space in front of their home 
and/or drive extra to comply with alternate-side parking restrictions.  Also, we were surprised to find a 
greater proportion of vehicle trips in Ann Arbor tend to include some element of cruising but there are 
fewer instances of very long parking searches.  For example, in Figure 8c there is a neighborhood in 
the southernmost portion of the image that shows a high concentration of trips that meet the 
definition of cruising.  However, on close inspection there is no shortage of parking space in this 
neighborhood and all of the trips that are identified as cruising were made over multiple days in just 
one vehicle – presumably by the same driver.  A further investigation suggests that this driver was 
simply driving around for no reason that we could discern.  Again, this underscores our emphasis that 
the estimates provide upper bounds for the extent of cruising. 
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Figure 8a Probability a Trip Contains Cruising > 200 Meters San Francisco 
(Inverse Distance Weighted Interpolation) 

  
 
Figure 8b Mean Number of Repeated Blocks San Francisco 

(Inverse Distance Weighted Interpolation) 
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Figure 8c  Probability a Trip Contains Cruising > 200 Meters Ann Arbor 
(Inverse Distance Weighted Interpolation) 
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Figure 8d Mean Number of Repeated Blocks Ann Arbor  
(Inverse Distance Weighted Interpolation) 
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CONCLUSIONS 
Most research on cruising to date has defined cruising as the percentage of cars that are 

searching for parking. Moreover, previous research has looked for cruising where it is already known 
to occur or where it is most likely to occur. Both these characteristics are likely to overestimate the 
excess travel resulting from parking search. A driver may be willing to take the first parking space 
available within an acceptable distance of his or her destination, or even the second or third, even if 
the destination has yet to be reached. In such a case, the driver searched for parking but there is no 
excess travel associated with the search. Had the driver been asked in a survey whether s/he was 
looking for parking the answer would have been “yes”; the trip would be identified as cruising but has 
no marginal negative or excess impact on traffic or emissions. In the case where a driver takes a space 
ahead of the ultimate destination, parking scarcity might technically reduce VMT, as we discuss in 
Millard-Ball, Hampshire & Weinberger (2020).  And the dense downtowns and commercial 
neighborhoods where cruising researchers have focused are unlikely to be representative of all travel, 
or even of urban travel. 

 The research presented here focuses on the excess travel that results from parking search, and 
provides a method by which any jurisdiction can obtain a broad and nuanced view, identifying 
locations where parking search leads to negative externalities.  Such a view would allow a richer policy 
response providing the jurisdiction with tools to better identify at what times of day and the extent—
both in terms of intensity and geography—of the problem.  

We offer two alternative definitions of cruising based on the driver’s route once he or she first 
reaches a 400m radius of their parking spot (i.e. the final GPS location transmission): (i) that the 
actual path is at least 200m greater than the shortest path, or (ii) that at least one block is traversed 
more than once (a subset of the trips identified by the first definition). In both cases, a second 
condition is that at least 50% of the subsequent travel takes place within the 400m radius, in order to 
avoid classifying errands and drop-offs as cruising. The excess travel definition of cruising is a more 
restrictive definition than typically implied in the literature, but it more closely matches the negative 
externalities implied in the term “cruising for parking.” It is also more precise than a definition based 
on parking search, because the start of the search process (i.e., the point at which a driver would take 
the first available space) is ill defined. The repeated blocks definition of cruising, in contrast, is less 
satisfactory. As our results indicate, it fails to capture the extent of cruising; many drivers do not circle 
around or drive back and forth, but instead adopt more varied search patterns. 

Our method raises further issues, in that parking search does not appear to be the dominant 
reason for excess travel. Instead, pick-ups and drop-offs, an irregular street pattern, traffic congestion, 
driver inattention or the ease and simplicity of a longer route may be just as important contributors to 
longer vehicle travel distances in the final portion of a trip. In some cases, drivers may simply drive 
around to lull a baby to sleep, or they may circle while waiting for a passenger or to argue with the 
family over where to eat.  These examples, which we observed in cases where on-board video footage 
was available, would appear as “cruising” in a machine-read set of GPS traces; thus, our estimates are 
best interpreted as an “upper bound” for cruising. 

 Our results leave areas for further work. Most notably, we do not explain the reasons for 
spatial and temporal differences in cruising. Previous research highlights price differentials between 
on- and off-street parking (e.g. van Ommeren et al. 2012; Inci 2014), but limited availability of all 
parking types may also be a cause of cruising. However, we have developed a strategy that allows 
researchers and policy-makers to look across any given geography to gain insight into cruising and 
excess travel.  Ultimately, pinpointing the exact amount of cruising may remain an elusive goal. 
Circling around on urban streets has many causes, of which cruising for parking is just one.    
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